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Abstract. We consider the problem of optimization of cost functionals on the infinite-dimensional manifold of diffeomorphisms. We present a4
new class of optimization methods, valid for any optimization problem setup on the space of diffeomorphisms by generalizing Nesterov accelerated5
optimization to the manifold of diffeomorphisms. While our framework is general for infinite dimensional manifolds, we specifically treat the case6
of diffeomorphisms, motivated by optical flow problems in computer vision. This is accomplished by building on a recent variational approach7
to a general class of accelerated optimization methods by Wibisono, Wilson and Jordan [63], which applies in finite dimensions. We generalize8
that approach to infinite dimensional manifolds. We derive the surprisingly simple continuum evolution equations, which are partial differential9
equations, for accelerated gradient descent, and relate it to simple mechanical principles from fluid mechanics. Our approach has natural connections10
to the optimal mass transport problem. This is because one can think of our approach as an evolution of an infinite number of particles endowed11
with mass (represented with a mass density) that moves in an energy landscape. The mass evolves with the optimization variable, and endows the12
particles with dynamics. This is different than the finite dimensional case where only a single particle moves and hence the dynamics does not13
depend on the mass. We derive the theory, compute the PDEs for accelerated optimization, and illustrate the behavior of these new accelerated14
optimization schemes.115
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1. Introduction. Accelerated optimization methods have gained wide applicability within the machine learning17
and optimization communities (e.g.,[12, 21, 23, 26, 27, 28, 31, 34, 43, 44, 42]). They are known for leading to op-18
timal convergence rates among schemes that use only gradient (first order) information in the convex case. In the19
non-convex case, they appear to provide robustness to shallow local minima. The intuitive idea is that by considering20
a particle with mass that moves in an energy landscape, the particle will gain momentum and surpass shallow local21
minimum and settle in in more wider, deeper local extrema in the energy landscape. This property has made them22
(in conjunction with stochastic search algorithms) particularly useful in machine learning, especially in the training23
of deep networks, where the optimization is a non-convex problem that is riddled with local minima. These methods24
have so far only been used in optimization problems that are defined in finite dimensions. In this paper, we consider25
the generalization of these methods to infinite dimensional manifolds. We are motivated by applications in computer26
vision, in particular, segmentation, 3D reconstruction, and optical flow. In these problems, the optimization is over27
infinite dimensional geometric quantities (e.g., curves, surfaces, mappings), and so the problems are formulated on in-28
finite dimensional manifolds. Recently there has been interest within the machine learning community in optimization29
on finite dimensional manifolds, such as matrix groups, e.g.,[69, 35, 25], which have particular structure not available30
on infinite dimensional manifolds that we consider here.31

Recent work [63] has shown that the continuum limit of accelerated methods, which are discrete optimization al-32
gorithms, may be formulated with variational principles. This allows one to derive the continuum limit of accelerated33
optimization methods (Nesterov’s optimization method [42] and others) as an optimization problem on descent paths.34
The resulting optimal continuum path is defined by an ODE, which when discretized appropriately yields Nesterov’s35
method and other accelerated optimization schemes. The optimization problem on paths is an action integral, which36
integrates the Bregman Lagrangian. The Bregman Lagrangian is a time-explicit Lagrangian (from physics) that con-37
sists of kinetic and potential energies. The kinetic energy is defined using the Bregman divergence (see Section 2.2); it38
is designed for finite step sizes, and thus differs from classical action integrals in physics [3, 37]. The potential energy39
is the cost function that is to be optimized.40

We build on the approach of [63] by formulating accelerated optimization with an action integral, but we gener-41
alize that approach to infinite dimensional manifolds. Our approach is general for infinite dimensional manifolds, but42
we illustrate the idea here for the case of the infinite dimensional manifold of diffeomorphisms of Rn (the case of the43
manifold of curves has been recently formulated by the authors [68],[67],[68]). To do this, we abandon the Bregman44
Lagrangian framework in [63] since that assumes that the variable over which one optimizes is embedded in Rn.45
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Instead, we adopt the classical formulation of action integrals in physics [3, 37], which is already general enough to46
deal with manifolds, and kinetic energies that are defined through general Riemannian metrics rather than a traditional47
Euclidean metric, thus by-passing the need for the use of Bregman distances. Our approach requires consideration of48
additional technicalities beyond that of [63] and classical physics. Namely, in finite dimensions in Rn, one can think49
of accelerated optimization as a single particle with mass moving in an energy landscape. Since only a single particle50
moves, mass is a fixed constant that does not impact the dynamics of the particle. However, in infinite dimensions,51
one can instead think of an infinite number of particles each moving, which is modeled as a mass density. In the case52
of the manifold of diffeomorphisms of Rn, we endow Rn with this mass density (see Figure 1). This mass density53
is introduced as part of the optimization and impacts the dynamics; it does not directly relate to the argument of54
the energy/loss function, i.e., the diffeomorphism. As the diffeomorphism evolves to optimize the cost functional, it55
deforms Rn and redistributes the mass, and so the density changes in time. Since the mass density defines the kinetic56
energy and the stationary action path depends on the kinetic energy, the dynamics of the evolution to minimize the57
cost functional depends on the way that mass is distributed in Rn. Therefore, in the infinite dimensional case, one58
also needs to optimize and account for the mass density, which cannot be neglected. Further, our approach, due to the59
infinite dimensional nature, has evolution equations that are PDEs rather than ODEs in [63]. Finally, the discretization60
of the resulting PDEs requires the use of entropy schemes [50] since our evolution equations are defined as viscosity61
solutions of PDEs, required to treat shocks and rarefaction fans. These phenomena appear not to be present in the62
finite dimensional case.63

1.1. Contributions. Our contributions are specifically, 1. We present a novel variational approach to accelerated64
optimization on manifolds. and adapt our approach to accelerated optimization on the infinite dimensional manifold65
diffeomorphisms, i.e., smooth invertible mappings. 2. We introduce a Riemannian metric for the purpose of acceler-66
ation on diffeomorphisms, which defines the kinetic energy of a mass distribution. The metric is the same one in the67
fluid mechanics formulation of the L2 mass transport problem [7]. 3. We derive the PDE for accelerated optimization68
of any cost functional defined on diffeomorphisms, and relate it to fluid mechanics principles. 4. We present numerical69
discretizations, for both Eulerian and Lagrangian formulations of accelerated optimization on diffeomorphisms, and70
show the advantage over gradient descent and competing methods.71

Contributions over conference version of paper: A conference version of this manuscript [54] entitled ”Vari-72
ational PDEs for Acceleration on Manifolds and Application to Diffeomorphisms” was published in the journal of73
neural information processing systems in 2018. This work represents an expansion of the initial paper. The additional74
contributions are 1) We provide a Lagrangian formulation of accelerated PDE optimization on the manifold of diffeo-75
morphisms, as opposed to the Eulerian formulation in the original formulation. This shows that accelerated PDE on76
diffeomorphisms constitute a wave equation. This gives an additional justification as to why the accelerated scheme77
out-performs gradient descent in speed: the CFL conditions to the wave equation are more generous compared to gra-78
dient PDE. The formulation also allows a simple numerical scheme in the case of the particular mass model analyzed79
in this paper. 2) We derive the numerical method for the aforementioned Lagrangian formulation. 3) We benchmark80
our method on the Middlebury optical flow data set [4], and compare against a comparable general purpose variational81
optimizer. We show a speed advantage against that optimizer.82

1.2. Related Work.83

1.2.1. Sobolev Optimization. Our work is motivated by Sobolev gradient descent approaches [55, 6, 14, 57,84
15, 56, 58, 38, 53, 65] for optimization problems on manifolds, which have been used for segmentation and optical85
flow problems. These approaches are general in that they apply to non-convex problems, and they are derived by86
computing the gradient of a cost functional with respect to a Sobolev metric rather than an L2 metric typically assumed87
in variational optimization problems. The resulting gradient flows have been demonstrated to yield coarse-to-fine88
evolutions, where the optimization automatically transitions from coarse to successively finer scale deformations.89
This makes the optimization robust to local minimizers that plague L2 gradient descents. We should point out that90
the Sobolev metric is used beyond optimization problems and have been used extensively in shape analysis (e.g.,91
[30, 40, 39, 5]). While such gradient descents are robust to local minimizers, computing them in general involves92
an expensive computation of an inverse differential operator at each iteration of the gradient descent. In the case of93
optimization problems on curves and a very particular form of a Sobolev metric this can be made computationally94
fast [57], but the idea does not generalize beyond curves. In this work, we aim to obtain robustness properties of95
Sobolev gradient flows, but without the expensive computation of inverse operators. Our accelerated approach involves96
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averaging the gradient across time in the descent process, rather than an averaging across space in the Sobolev case.97
Despite our goal of avoiding Sobolev gradients for computational speed, we should mention that our framework is98
general to allow one to consider accelerated Sobolev gradient descents (although we do not demonstrate it here),99
where there is averaging in both space and time. This can be accomplished by changing the definition of kinetic100
energy in our approach. This could be useful in applications where added robustness is needed but speed is not a101
critical factor.102

1.2.2. Optimal Mass Transport. Our work relates to the literature on the problem of optimal mass transportion103
(e.g., [60, 22, 2, 48]), especially the formulation of the problem in [7]. The modern formulation of the problem, called104
the Monge-Kantorovich problem, is as follows. One is given two probability densities ρ0, ρ1 in Rn, and the goal is to105
compute a transformation M : Rn → Rn so that the pushforward of ρ0 by M results in ρ1 such that M has minimal106
cost. The cost is defined as the average Euclidean norm of displacement:

∫
Rn |M(x)−x|pρ0(x) dx where p ≥ 1. The107

value of the minimum cost is a distance (called the Lp Wasserstein distance) on the space of probability measures. In108
the case of p = 2, the transport M can be shown to the gradient of a scalar function [29, 1]. In the case that p = 2, [7]109
has shown that mass transport can be formulated as a fluid mechanics problem. In particular, the Wasserstein distance110
can be formulated as a distance arising from a Riemannian metric on the space of probability densities. The cost can111
be shown equivalent to the minimum Riemannian path length on the space of probability densities, with the initial and112
final points on the path being the two densities ρ0, ρ1. The tangent space is defined to be velocities of the density that113
infinitesimally displace the density. The Riemannian metric is just the kinetic energy of the mass distribution as it is114
displaced by the velocity, given by

∫
Rn

1
2ρ(x)|v(x)|2 dx. Therefore, optimal mass transport computes an optimal path115

on densities that minimizes the integral of kinetic energy along the path.116
In our work, we seek to minimize a potential on the space of diffeomorphisms, with the use of acceleration. We117

can imagine that each diffeomorphism is associated with a point on a manifold, and the goal is to move to the bottom118
of the potential well. To do so, we associate a mass density in Rn, which as we optimize the potential, moves in Rn via119
a push-forward of the evolving diffeomorphism. We regard this evolution as a path in the space of diffeomorphisms120
that arises from an action integral, where the action is the difference of the kinetic and potential energies. The kinetic121
energy that we choose, purely to endow the diffeomorphism with acceleration, is the same one used in the fluid122
mechanics formulation of optimal mass transportation for p = 2. We have chosen this kinetic energy for simplicity123
to illustrate our method, but we envision a variety of kinetic energies can be defined to introduce different dynamics.124
The main difference of our approach to the fluid mechanics formulation of mass transport is in the fact that we do not125
minimize just the path integral of the kinetic energy, but rather we derive our method by computing stationary paths of126
the path integral of kinetic minus potential energies. Since diffeomorphisms are generated by smooth velocity fields,127
we equivalently optimize over velocities. We also optimize over the mass distribution. Thus, the main difference128
between the fluid mechanics formulations of L2 mass transport and our approach is the potential on diffeomorphisms,129
which is used to define the action integral.130

1.2.3. Diffeomorphic Image Registration. Our work relates to the literature on diffeomorphic image registra-131
tion [6, 41, 19, 20], where the goal, similar to ours, is to compute a registration between two images as a diffeomor-132
phism. There a diffeomorphism is generated by a path of smooth velocity fields integrated over time. Rather than133
formulating an optimization problem directly on the diffeomorphism, the optimization problem is formed on a path134

of velocity fields. The optimization problem is to minimize
∫ 1

0
‖v‖2 dt where v is a time varying vector field, ‖ · ‖135

is a norm on velocity fields, and the optimization is subject to the constraint that the mapping φ maps one image to136
the other, i.e., I1 = I0 ◦ φ−1. The minimization can be considered as the minimization of an action integral where137
the action contains only a kinetic energy. The norm is chosen to be a Sobolev norm to ensure that the generated dif-138
feomorphism (by integrating the velocity fields over time) is smooth. The optimization problem is solved in [6] by a139
Sobolev gradient descent on the space of paths. The resulting path is a geodesic with Riemannian metric given by the140
Sobolev metric ‖v‖. In [41], it is shown these geodesics can be computed by integrating a forward evolution equation,141
determined from the conservation of momentum, with an initial velocity.142

Our framework instead uses accelerated gradient descent. Like [6, 41], it is derived from an action integral, but143
the action has both a kinetic energy and a potential energy, which is the objective functional that is to be optimized. In144
this current work, our kinetic energy arises naturally from physics rather than a Sobolev norm. One of our motivations145
in this work is to get regularizing effects of Sobolev norms without using Sobolev norms, since that requires inverting146
differential operators in the optimization, which is computationally expensive. Our kinetic energy is an L2 metric147
weighted by mass. Our method has acceleration, rather than zero acceleration in [6, 41], and this is obtained by148
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endowing a diffeomorphism with mass, which is a mass density in Rn. This mass allows for the kinetic energy to149
endow the optimization with dynamics. Our optimization is obtained as the stationary conditions of the action with150
respect to both velocity and mass density. The latter links our approach to optimal mass transport, described earlier.151

1.2.4. Optical Flow. Although our framework is general in solving any optimization on infinite dimensional152
manifolds, we demonstrate the framework for optimization of diffeomorphisms and specifically for optical flow prob-153
lems formulated as variational problems in computer vision (e.g., [24, 9, 10, 62, 52, 64, 66, 11]). Optical flow, i.e.,154
determining pixel-wise correspondence between images, is a fundamental problem in computer vision that remains155
a challenge to solve, mainly because optical flow is a non-convex optimization problem, and thus few methods exist156
to optimize such problems. Optical flow was first formulated as a variational problem in [24], which consisted of a157
data fidelity term and regularization favoring smooth optical flow. Since the problem is non-convex, approaches to158
solve this problem typically involve the assumption of small displacement between frames, so a linearization of the159
data fidelity term can be performed, and this results in a problem in which the global optimum of [24] can be solved160
via the solution of a linear PDE. Although standard gradient descent could be used on the non-linearized problem, it161
is numerically sensitive, extremely computationally costly, and does not produce meaningful results unless coupled162
with the strategy described next. Large displacements are treated with two strategies: iterative warping and image163
pyramids. Iterative warping involves iteration of the linearization around the current accumulated optical flow. By use164
of image pyramids, a large displacement is converted to a smaller displacement in the downsampled images. While165
this strategy is successful in many cases, there are also many problems associated with linearization and pyramids,166
such as computing optical flow of thin structures that undergo large displacements. This basic strategy of linearization,167
iterative warping and image pyramids have been the dominant approach to many variational optical flow models (e.g.,168
[24, 9, 10, 62, 52]), regardless of the regularization that is used (e.g., use of robust norms, total variation, non-local169
norms, etc). In [62], the linearized problem with TV regularization has been formulated as a convex optimization170
problem, in which a primal-dual algorithm can be used. In [65] linearization is avoided and rather a gradient descent171
with respect to a Sobolev metric is computed, and is shown to have a automatic coarse-to-fine optimization behavior.172
Despite these works, most optical flow algorithms involve simplification of the problem into a linear problem. In this173
work, we construct accelerated gradient descent algorithms that are applicable to any variational optical flow algorithm174
in which we avoid the linearization step and aim to obtain a better optimizer. For illustration, we consider here the175
case of optical flow modeled as a global diffeomorphism, but in principle this can be generalized to piecewise diffeo-176
morphisms as in [66]. Since diffeomorphisms do not form a linear space, rather a infinite-dimensional manifold, we177
generalize accelerated optimization to that space. We show empirically that our accelerated method can out-perform178
the standard linearized approach to optical flow in terms of computational speed.179

2. Background for Accelerated Optimization on Manifolds.180

2.1. Manifolds and Mechanics. We briefly summarize the key facts in classical mechanics that are the basis for181
our accelerated optimization method on manifolds.182

2.1.1. Differential Geometry. We review differential geometry (from [17]), as this will be needed to derive our183
accelerated optimization scheme on the manifold of diffeomorphisms. First a manifold M is a space in which every184
point p ∈ M has a (invertible) mapping fp from a neighborhood of p to a model space that is a linear normed vector185
space, and has an additional compatibility condition that if the neighborhoods for p and q overlap then the mapping186
fp ◦ f−1

q is differentiable. Intuitively, a manifold is a space that locally appears flat. The model space may be finite187
or infinite dimensional when the model spaces are finite or infinite dimensional, respectively. In the latter case the188
manifold is referred to as an infinite dimensional manifold and in the former case a finite dimensional manifold. The189
space of diffeomorphisms of Rn, the space of interest in this paper, is an infinite dimensional manifold. The tangent190
space at a point p ∈M is the equivalence class, [γ], of curves γ : [0, 1]→M under the equivalence that γ(0) = p and191
(fp ◦ γ)′(0) are the same for each curve γ ∈ [γ]. Intuitively, these are the set of possible directions of movement at192
the point p on the manifold. The tangent bundle, denoted TM , is TM = {(p, v) : p ∈M, v ∈ TpM}, i.e., the space193
formed from the collection of all points and tangent spaces.194

In this paper, we will assume additional structure on the manifold, namely, that an inner product (called the195
metric) exists on each tangent space TpM . Such a manifold is called a Riemannian manifold. A Riemannian manifold196
allows one to formally define the lengths of curves γ : [−1, 1] → M on the manifold. This allows one to construct197
paths of critical length, called geodesics, a generalization of a path on constant velocity on the manifold. Note that198
while existence of geodesics is guaranteed on finite dimensional manifolds, in the infinite dimensional case, there is199
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no such guarantee. The Riemannian metric also allows one to define gradients of functions g : M → R defined on200
the manifold: the gradient ∇g(p) ∈ TpM is defined to be the vector that satisfies d

dε g(γ(ε))|ε=0 = 〈∇g(p), γ′(0)〉,201
where γ(0) = p, the left hand side is the directional derivative and the right hand side is the inner product from the202
Riemannian structure.203

2.1.2. Mechanics on Manifolds. We now briefly review some of the formalism of classical mechanics on man-204
ifolds that will be used in this paper. The material is from [3, 37]. The subject of mechanics describes the principles205
governing the evolution of a particle that moves on a manifold M . The equations governing a particle are Newton’s206
laws. There are two viewpoints in mechanics, namely the Lagrangian and Hamiltonian viewpoints, which formulate207
more general principles to derive Newton’s equations. In this paper, we use the Lagrangian formulation to derive208
equations of motion for accelerated optimization on the manifold of diffeomorphisms. Lagrangian mechanics obtains209
equations of motion through variational principles, which makes it easier to generalize Newton’s laws beyond sim-210
ple particle systems in R3, especially to the case of manifolds. In Lagrangian mechanics, we start with a function211
L : TM → R, called the Lagrangian, from the tangent bundle to the reals. Here we assume that M is a Riemannian212
manifold. One says that a curve γ : [−1, 1] → M is a motion in a Lagrangian system with Lagrangian L if it is213
an extremal of A =

∫
L(γ(t), γ̇(t)) dt. The previous integral is called an action integral. Hamilton’s principle of214

stationary action states that the motion in the Lagrangian system satisfies the condition that δA = 0, where δ denotes215
the variation, for all variations of A induced by variations of the path γ that keep endpoints fixed. The variation is216
defined as δA := d

ds A(γ̃(t, s))|s=0 where γ̃ : [−1, 1]2 → M is a smooth family of curves (a variation of γ) on the217
manifold such that γ̃(t, 0) = γ(t). The stationary conditions give rise to what is known as Lagrange’s equations. A218
natural Lagrangian has the special form L = T − U where T : TM → R+ is the kinetic energy and U : M → R219
is the potential energy. The kinetic energy is defined as T (v) = 1

2 〈v, v〉 where 〈·, ·〉 is the inner product from the220
Riemannian structure. In the case that one has a particle system in R3, i.e., a collection of particles with masses mi,221
in a natural Lagrangian system, one can show that Hamilton’s principle of stationary action is equivalent to Newton’s222
law of motion, i.e., that d

dt (miṙi) = − ∂U
∂ri

where ri is the trajectory of the ith particle, and ṙi is the velocity. This223
states that mass times acceleration is the force, which is given by minus the derivative of the potential in a conservative224
system. Thus, Hamilton’s principle is more general and allows us to more easily derive equations of motion for more225
general systems, in particular those on manifolds.226

In this paper, we will consider Lagrangian non-autonomous systems where the Lagrangian is also an explicit227
function of time t, i.e., L : TM×R→ R. In particular, the kinetic and potential energies can both be explicit functions228
of time: T : TM × R → R and U : M × R → R. Autonomous systems have an energy conservation property and229
do not converge; for instance, one can think of a moving pendulum with no friction, which oscillates forever. Since230
the objective in this paper is to minimize an objective functional, we want the system to eventually converge and231
Lagrangian non-autonomous systems allow for this possibility. For completness, we present some basic facts of the232
Hamiltonian perspective to elaborate on the previous point, although we do not use this in the present paper. The233
generalization of total energy is the Hamiltonian, defined as the Legendre transform of the Lagrangian: H(p, q, t) =234
〈p, q̇〉 − L(q, q̇, t) where p = dL

dq̇ is the fiber derivative of L with respect to q̇, i.e., dL
dq̇ · w = d

dε L(q, q̇ + εw)|ε=0.235
From the Hamiltonian, one can also obtain a system of equations describing motion on the manifold. It can be shown236
that if L = T − U then H = T + U and more generally, dH

dt = −∂L∂t along the stationary path of the action. Thus,237
if the Lagrangian is natural and autonomous, the total energy is preserved, otherwise energy could be dissipated based238
on the partial of the Lagrangian with respect to t.239

2.2. Variational Approach to Accelerated Optimization in Finite Dimensional Vector Spaces. Accelerated240
gradient optimization can be motivated by the desire to make an ordinary gradient descent algorithm 1) more robust241
to noise and local minimizers, and 2) speed-up the convergence while only using first order (gradient) information.242
For instance, if one computes a noisy gradient due imperfections in obtaining an accurate gradient, a simple heuristic243
to make the algorithm more robust is to compute a running average of the gradient over iterations, and use that as244
the search direction. This also has the advantage, for instance in speeding up optimization in narrow shallow valleys.245
Gradient descent (with finite step sizes) would bounce back and forth across the valley and slowly descend down, but246
averaging the gradient could cancel the component across the valley and more quickly optimize the function. Strategic247
dynamically changing weights on previous gradients can boost the descent rate. Nesterov put forth the following248
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famous scheme [42] which attains an optimal rate of order 1
t2 in the case of a smooth, convex cost function f(x):249

yk+1 = xk −
1

β
∇f(xk), xk+1 = (1− γk)yk+1 + γkyk, γk =

1− λk
λk + 1

, λk =
1 +

√
1 + 4λ2

k−1

2
250

where xk is the k-th iterate of the algorithm, yk is an intermediate sequence, and γk are dynamically updated weights.251
Recently [63] presented a variational generalization of Nesterov’s [42] and other accelerated gradient descent252

schemes in Rn based on the Bregman divergence of a convex distance generating function h:253

(2.1) d(y, x) = h(y)− h(x)−∇h(x) · (y − x)254

and careful discretization of the Euler-Lagrange equations for the time integral of the following Bregman Lagrangian255

L(X,V, t) = ea(t)+γ(t)
[
d(X + e−a(t)V,X)− eb(t)U(X)

]
256

where the potential energy U represents the cost to be minimized. In the Euclidean case where h(x) = 1
2 |x|

2 gives257
d(y, x) = 1

2 |y − x|
2, this simplifies to258

L(X,V, t) = eγ(t)

[
e−a(t) 1

2
|V |2 − ea(t)+b(t)U(X)

]
259

where T = 1
2 |V |

2 is the kinetic energy of a unit mass particle in Rn; other definitions of kinetic energies (some leading260
to faster convergence have been analyzed in [36]). Nesterov’s methods [42, 46, 45, 44, 47, 43] belong to a subfamily261
of Bregman Lagrangians with the following choice of parameters (indexed by k > 0)262

a = log k − log t, b = k log t+ log λ, γ = k log t263

which, in the Euclidean case, yields a non-autonomous Lagrangian as follows:264

(2.2) L =
tk+1

k

(
T − λk2tk−2U

)
265

In the case of k = 2, for example, the stationary conditions of the integral of this time-explicit action yield the contin-266
uum limit of Nesterov’s accelerated mirror descent [43] derived in both [51, 31]. For convex U , [63] show exponential267
convergence, and a O(1/t2) convergence in the discrete case (see also [59, 61]). In our case, as the potential is defined268
on a non-linear manifold, the potentials are generally not convex and we do not have such convergence rate results.269
However, see [8] for convergence rate and discrete analysis for a PDE related to an Accelerated PDE (3.31) considered270
in this paper. In particular, the exponential rate is shown.271

Since the Bregman Lagrangian assumes that the underlying manifold is a subset of Rn (in order to define the272
Bregman distance2), which many manifolds do not have - for instance the manifold of diffeomorphisms that we273
consider in this paper, we instead use the original classical mechanics formulation, which already provides a formalism274
for considering general metrics though the Riemannian distance, although not equivalent to the Bregman distance.275

3. Accelerated Optimization for Diffeomorphisms. In this section, we use the mechanics of particles on man-276
ifolds developed in the previous section, and apply it to the case of the infinite-dimensional manifold of diffeomor-277
phisms in Rn for general n. This allows us to generalize accelerated optimization to infinite dimensional manifolds.278
Diffeomorphisms are smooth mappings φ : Rn → Rn whose inverse exists and is also smooth. Diffeomorphisms279
form a group under composition. The inverse operator on the group is defined as the inverse of the function, i.e.,280
φ−1(φ(x)) = x. Here smoothness will mean that two derivatives of the mapping exist. The group of diffeomorphisms281
will be denoted Diff(Rn). Diffeomorphisms relate to image registration and optical flow, where the mappings between282

2One could in fact generalize such operations as addition and subtraction in manifolds, using the exponential and logarithmic maps. We avoid
this since in the types of manifolds that we deal with, computing such maps itself requires solving a PDE or another optimization problem. We
avoid all these complications, by going back to the formalism in classical mechanics.
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two images are often modeled as diffeomorphisms3. Recovering diffeomorphisms from two images will be formulated283
as an optimization problem U(φ) where U will correspond to the potential energy. Note we avoid calling U the energy284
as is customary in computer vision literature, because for us the energy will refer to the total mechanical energy (i.e.,285
the sum of the kinetic and potential energies). We do not make any assumptions on the particular form of the potential286
in this section, as our goal is to be able to accelerate any optimization problem for diffeomorphisms, given that one287
can compute a gradient of the potential. The formulation here allows any of the numerous cost functionals developed288
over the past three decades for image registration to be accelerated.289

In the first sub-section, we give the formulation and evolution equations for the case of acceleration without energy290
dissipation (Hamiltonian is conserved), since most of the calculations are relevant for the case of energy dissipation,291
which is needed for the evolution to converge to a diffeomorphism. In the second sub-section, we formulate and292
compute the evolution equations for the energy dissipation case, which generalizes Nesterov’s method to the infinite293
dimensional manifold of diffeomorphisms. Finally, in the last sub-section we give an example potential and its gradient294
calculation for a standard image registration or optical flow problem.295

3.1. Acceleration Without Energy Dissipation.296

3.1.1. Formulation of the Action Integral. Since the potential energy U is assumed given, in order to formulate297
the action integral in the non-dissipative case, we need to define kinetic energy T on the space of diffeomorphisms.298
Since diffeomorphisms form a manifold, we can apply the the results in the previous section and note that the kinetic299
energy will be defined on the tangent space to Diff(Rn) at a particular diffeomorphism φ. This will be denoted300
TφDiff(Rn). The tangent space at φ can be roughly thought of as the set of local perturbations v of φ given for all301
ε small that preserve the diffeomorphism property, i.e., φ + εv is a diffeomorphism. One can show that the tangent302
space is given by303

(3.1) TφDiff(Rn) = {v : φ(Rn)→ Rn : v is smooth }.304

In the above, since φ is a diffeomorphism, we have that φ(Rn) = Rn. However, we write v : φ(Rn) → Rn to305
emphasize that the velocity fields in the tangent space are defined on the range of φ, so that v is interpreted as a306
Eulerian velocity. By definition of the tangent space, an infinitesimal perturbation of φ by a tangent vector, given by307
φ + εv, will be a diffeomorphism for ε sufficiently small. Note that the previous operation of addition is defined as308
follows:309

(φ+ εv)(x) = φ(x) + εv(φ(x)).310

The tangent space is a set of smooth vector fields on φ(Rn) in which the vector field at each point φ(x), displaces311
φ(x) infinitesimally by v(φ(x)) to form another diffeomorphism.312

We note a classical result from [18], which will be of utmost importance in our derivation of accelerated optimiza-313
tion on Diff(Rn). The result is that any (orientable) diffeomorphism may be generated by integrating a time-varying314
smooth vector field over time, i.e.,315

(3.2) ∂tφt(x) = vt(φt(x)), x ∈ Rn,316

where ∂t denotes partial derivative with respect to t, φt denotes a time varying family of diffeomorphisms evaluated317
at the time t, and vt is a time varying collection of vector fields evaluated at time t. The path t 7→ φt(x) for a fixed x318
represents a trajectory of a particle starting at x and flowing according to the velocity field.319

The space on which the kinetic energy is defined is now clear, but one more ingredient is needed before we can320
define the kinetic energy. Any accelerated method will need a notion of mass, otherwise acceleration is not possible,321
e.g., a mass-less ball will not accelerate. We generalize the concept of mass to the infinite dimensional manifold322
of diffeomorphisms, where there are infinitely more possibilities than a single particle in the finite dimensional case323
considered by [63]. There optimization is done on a finite dimensional space, the space of a single particle, and the324
possible choices of mass are just different fixed constants. The choice of the constant, given the particle’s mass remains325
fixed, is irrelevant to the final evolution. This is different in the case of diffeomorphisms. Here we imagine that an326

3In medical imaging, the model of diffeomorphisms for registration is fairly accurate since typically full 3D scans are available and thus
all points in one image correspond to the other image and vice versa [6]. Of course there are situations (such as growth of tumors) where the
diffeomorphic assumption is invalid. In vision, typically images have occlusion phenomena and multiple objects moving in different ways. So a
diffeomorphism is not a valid assumption, it is however a good model when restricted to a single object in the un-occluded part [66, 32, 33].
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Fig. 1: Schematic of the quantities defined to derive accelerated optimization on the diffeomorphism manifold. φ
denotes the time-varying forward mapping (at each time the diffeomorphism φt is a point on the manifold), ψ is its
inverse. v denotes the time-varying vector field that defines φ and is an element of the tangent space to diffeomor-
phisms. ρ is the time-varying mass density (the ellipsoids depict a infinitesimal mass being transported by φ) defined
on the image domain Ω. ρ0#φt denotes the push forward of ρ0 by φt, i.e., ρ0#φt = (ρ0 ◦ ψt) det∇ψ. Note ρ does
not relate to the images I0, I1 to be registered, and is an auxiliary variable used to define the optimization procedure.

infinite number of particles densely distributed in Rn with mass exist and are displaced by the velocity field v at every327
point. Since the particles are densely distributed, it is natural to represent the mass of all particles with a mass density328
ρ : Rn → R, similar to a fluid at a fixed time instant. The density ρ is defined as mass divided by volume as the329
volume shrinks. During the evolution to optimize the potential U , the particles are displaced continuously and thus the330
density of these particles will in general change over time. Note the density will change even if the density at the start331
is constant except in the case of full translation motion (when v is spatially constant). The latter case is not general332
enough, as we want to capture general diffeomorphisms. We will assume that the system of particles in Rn is closed333
and so we impose a mass preservation constraint, i.e.,334

(3.3)
∫
Rn
ρ(x) dx = 1,335

where we assume the total mass is one without loss of generality. Note that the evolution of a time varying density ρt336
as it is deformed in time by a time varying velocity is given by the continuity equation, which is a local form of the337
conservation of mass given by (3.3). The continuity equation is defined by the partial differential equation338

(3.4) ∂tρ(x) + div (ρ(x)v(x)) = 0, x ∈ Rn339

where div () denotes the divergence operator acting on a vector field and is div (F ) =
∑n
i= ∂xiF

i where ∂xi is the340
partial with respect to the ith coordinate and F i is the ith component of the vector field. We will assume that the mass341
distribution dies down to zero outside a compact set so as to avoid boundary considerations in our derivations.342

We now have the two ingredients, namely the tangent vectors to Diff(Rn) and the concept of mass, which allows343
us to define a natural physical extension of the kinetic energy to the case of an infinite mass distribution. We present344
one possible kinetic energy to illustrate the idea of accelerated optimization, but this is by no means the only definition345
of kinetic energy. We envision this to be part of the design process in which one could get a multitude of various346
different accelerated optimization schemes by defining different kinetic energies. Our definition of kinetic energy is347
just the kinetic energy arising from fluid mechanics:348

(3.5) T (v) =

∫
φ(Rn)

1

2
ρ(x)|v(x)|2 dx,349
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which is just the integration of single particle’s kinetic energy 1
2m|v|

2 and matches the definition of the kinetic energy350
of a sum of particles in elementary physics. Note that the kinetic energy is just one-half times the norm squared for the351
norm arising from the Riemannian metric [3], i.e., an inner product on the tangent space of Diff(Rn). The Riemannian352
metric is given by 〈v1, v2〉 =

∫
Rn ρ(x)v1(x) ·v2(x) dx, which is just a weighted L2 inner product. Note that the above353

kinetic energy is just one particular choice, and other choices of the metric would lead to different kinetic energy354
definitions, which is an area for future research. This paper analyzes (3.5) as an example, and is motivated by its355
physical interpretation and simplicity.356

We are now ready to define the action integral for the case of Diff(Rn), which is defined on paths of diffeomor-357
phisms. A path of diffeomorphisms is φ : [0,∞)× Rn → Rn and we will denote the diffeomorphism at time t along358
this path as φt. Since diffeomorphisms are generated by velocity fields, we may equivalently define the action in terms359
of paths of velocity fields. A path of velocity fields is given by v : [0,∞) × Rn → Rn, and the velocity at time t360
along the path is denoted vt. Notice that the action requires a kinetic energy and the kinetic energy is dependent on361
the mass density. Thus, a path of densities ρ : [0,∞)× Rn → R+ is required, which represents the mass distribution362
of the particles in Rn as they are deformed along time by the velocity field vt. This path of densities is subject to the363
continuity equation. With this, the action integral is then364

(3.6) A =

∫
[T (vt)− U(φt)] dt,365

where the integral is over time, and we do not specify the limits of integration as it is irrelevant as the endpoints will be366
fixed and the action will be thus independent of the limits. Note that the action is implicitly a function of three paths,367
i.e., vt, φt and ρt. Further, these paths are not independent of each other as φt depends on vt through the generator368
relation (3.2), and ρt depends on vt through the continuity equation (3.4).369

3.1.2. Stationary Conditions for the Action. We now derive the stationary conditions for the action integral370
(3.6), and thus the evolution equation for a path of diffeomorphisms, which is Hamilton’s principle of stationary371
action, equivalent to a generalization of Newton’s laws of motion extended to diffeomorphisms. As discussed earlier,372
we would like to find the stationary conditions for the action integral (3.6), defined on the path φt, under the conditions373
that it is generated by a path of smooth velocity fields vt, which is also coupled with the mass density ρt.374

We treat the computation of the stationary conditions of the action as a constrained optimization problem with375
respect to the two aforementioned constraints. To do this, it is easier to formulate the action in terms of the path of376
the inverse diffeomorphisms φ−1

t , which we will call ψt. This is because the non-linear PDE constraint (3.2) can be377
equivalently reformulated as the following linear transport PDE in the inverse mappings:378

(3.7) ∂tψt(x) + [Dψt(x)]vt(x) = 0, x ∈ Rn379

where D denotes the derivative (Jacobian) operator. To derive the stationary conditions with respect to the constraints,380
we use the method of Lagrange multipliers. We denote by λ : [0,∞)×Rn → Rn the Lagrange multiplier according to381
(3.7). We denote µ : [0,∞)×Rn → R as the Lagrange multiplier for the continuity equation (3.4). Because we would382
like to be able to have possibly discontinuous solutions of the continuity equation, we formulate it in its weak form383
by multiplying the constraint by the Lagrange multiplier and integrating by parts thereby removing the derivatives on384
possibly discontinuous ρ:385

(3.8)
∫ ∫

Rn
µ [∂tρ+ div (pv)] dxdt = −

∫ ∫
Rn

[∂tµ+∇µ · v] ρ dx dt,386

where ∇ denotes the spatial gradient operator. Notice that we ignore the boundary terms from integration by parts as387
we will eventually compute stationary conditions, and we are assuming fixed initial conditions for ρ0 and we assume388
that ρ∞ converges and thus cannot be perturbed when computing the variation of the action integral. With this, we can389
formulate the action integral with Lagrange multipliers as390

A =

∫
[T (v)− U(φ)] dt+

∫ ∫
Rn
λT [∂tψ + (Dψ)v] dxdt−

∫ ∫
Rn

[∂tµ+∇µ · v] ρdxdt,(3.9)391
392

where we have omitted the subscripts to avoid cluttering the notation. Notice that the potential U is now a function of393
ψ, and the action depends now on ρ, ψ, v and the Lagrange multipliers µ, λ.394
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We now compute variations ofA as we perturb the paths by variations δρ, δv and δφ along the paths. The variation395
with respect to ρ is defined as δA · δρ = d

dεA(ρ+ εδρ, v, ψ)
∣∣
ε=0

, and the other variations are defined in a similar396
fashion. By computing these variations, we get the following stationary equations:397

THEOREM 3.1. The stationary conditions of the path for the action (3.9) are398

∂tλ+ (Dλ)v + λdiv (v) = (∇ψ)−1∇U(φ)(3.10)399

ρv + (∇ψ)λ− ρ∇µ = 0(3.11)400

∂tµ+∇µ · v =
1

2
|v|2(3.12)401

402

where ∇U(φ) ∈ TφDiff(Rn) denotes the functional gradient of U with respect to φ (see Appendix 6.1), and ∇µ,∇ψ403
are spatial gradients. The original constraints (3.7) on the mapping and the continuity equation (3.4) are part of the404
stationary conditions.405

Proof. See Appendix 6.2.406

While the previous theorem does give the stationary conditions and evolution of the Lagrange multipliers, in order407
to define a forward evolution method where the initial conditions for the density, mapping and velocity are given,408
we would need initial conditions for the Lagrange multipliers, which are not known from the calculation leading to409
Theorem 3.1. Therefore, we will now eliminate the Lagrange multipliers and rewrite the evolution equations in terms410
of forward equations for the velocity, mapping and density. This leads to the following theorem:411

THEOREM 3.2 (Evolution Equations for the Path of Least Action). The stationary conditions for the path of the412
action integral (3.6) subject to the constraints (3.2) on the mapping and the continuity equation (3.4) are given by the413
forward evolution equation414

(3.13) ∂tv = −(Dv)v − 1

ρ
∇U(φ),415

which describes the evolution of the velocity. The forward evolution equation for the diffeomorphism is given by (3.2),416
that of its inverse mapping is given by (3.7), and the forward evolution of its density is given by (3.4).417

Proof. See Appendix 6.3.418

REMARK 1 (Relation to Euler’s Equations). The terms ∂tv + (Dv)v (along with the continuity equation) is the419
left hand side of the compressible Euler Equation [37], which describes the motion of a perfect fluid (i.e., assuming420
no heat transfer or viscous effects). The difference is that the right hand side in (3.13) is the gradient of the potential,421
which we seek to optimize, that depends on the diffeomorphism that is the integral of the velocity over time, rather422
than the gradient of pressure that is purely a function of density in the Euler equations.423

With this theorem, it is now possible to numerically compute the stationary path of the action, by starting with424
initial conditions on the density, mapping and velocity. The velocity is updated by (3.13), the mapping is then updated425
by (3.2), and the density is updated by (3.4). Note that the density at each time impacts the velocity as seen in (3.13).426
These equations are a set of coupled partial differential equations. They describe the path of stationary action when427
the action integral does not arise from a system that has dissipative forces. Notice the velocity evolution is a natural428
analogue of Newton’s equations. Indeed, if we consider the material derivative, which describes the time rate of change429
of a quantity subjected to a time dependent velocity field, then one can write the velocity evolution (3.13) as follows.430

THEOREM 3.3 (Equivalence of Critical Paths of Action to Newton’s 2nd Law). The velocity evolution (3.13)431
derived as the critical path of the action integral (3.6) is432

(3.14) ρ
Dv

Dt
= −∇U(φ),433

where Df
Dt := ∂tf + (Df)v is the material derivative.434

Proof. This is consequence of the definition of material derivative.435

The material derivative is obtained by taking the time derivative of f along the path t→ φ(t, x), i.e., d
dtf(t, φ(t, x)).436

Therefore, Dv/Dt is the derivative of velocity along the path. The equation (3.14) says the time rate of change of437
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velocity times density is equation to minus the gradient of the potential, which is Newton’s 2nd law, i.e., the mass438
times acceleration is equal to the force, which is given by the gradient of the potential in a conservative system.439

The evolution described by the equations above will not converge. This is because the total energy is conserved,440
and thus the system will oscillate over a (local) minimum of the potential U , forever, unless the initialization is at a441
stationary point of the potential U . In practice, due to discretization of the equations, which require entropy preserving442
schemes [50], the implementation will dissipate energy and the evolution equations eventually converge.443

3.1.3. Viscosity Solution and Regularity. An important question is whether the evolution equations given by444
Theorem 3.2 maintain that the mapping φt remains a diffeomorphism given that one starts the evolution with a diffeo-445
morphism. This is of course important since all of the derivations above were done assuming that φ is a diffeomor-446
phism, moreover for many applications one wants to maintain a diffeomorphic mapping. The answer is affirmative447
since to define a solution of (3.13), we define the solution as the viscosity solution (see e.g., [16, 49, 50]). The viscosity448
solution is defined as the limit of the equation (3.13) with a diffusive term of the velocity added to the right hand side,449
as the diffusive coefficient goes to zero. More precisely450

(3.15) ∂tvε = −(Dvε)vε + ε∆vε −
1

ρ
∇U(φ),451

where ∆ denotes the spatial Laplacian, which is a smoothing operator. This leads to a smooth (C∞) solution due to452
the known smoothing properties of the Laplacian. The viscosity solution is then v = lim

ε→0 vε . In practice, we do not453
actually add in the diffusive term, but rather approximate the effects with small ε by using entropy conditions in our454
numerical implementation. One may of course add the diffusive term to induce more regularity into the velocity and455
thus into the mapping φ. Larger ε would make the resulting optimization flow smoother both spatially and temporally.456
Since the velocity is smooth (C∞), the integral of a smooth vector field will result in a diffeomorphism [18].457

3.1.4. Discussion. An important property of these evolution equations, when compared to virtually all previous458
image registration and optical flow methods is the lack of need to compute inverses of differential operators, which are459
global smoothing operations, and are expensive. Typically, in optical flow (such as the classical Horn & Schunck [24])460
or LDDMM [6] where one computes Sobolev gradients, one needs to compute inverses of differential operators, which461
are expensive. Of course one could perform standard gradient descent, which does not typically require computing462
inverses of differential operators, but gradient descent is known not to be feasible and it is hard to numerically im-463
plement without significant pre-processing, and easily gets stuck in what are effectively numerical local minima. The464
equations in Theorem 3.2 are all local, and experiments suggest they are not susceptible to the problems that plague465
gradient descent.466

3.1.5. Constant Density Case. We now analyze the case when the density ρ is chosen to be a fixed constant, and467
we derive the evolution equations. This case is the one that is assumed within the computational anatomy literature,468
and we show how considering the density evolution simplifies the optimization equations. In this case, the kinetic469
energy simplifies as follows470

(3.16) T (v) =
ρ

2

∫
φ(Rn)

|v(x)|2 dx.471

We can define the action integral as before (3.6) with the previous definition of kinetic energy, and we can derive the472
stationary conditions by defining the following action integral incorporating the mapping constraint (3.7). This gives473
the modified action integral as474

A =

∫
[T (v)− U(φ)] dt+

∫ ∫
Rn
λT [∂tψ + (Dψ)v] dxdt.(3.17)475

476

Note that the continuity equation is no longer imposed as a constraint as the density is treated as a fixed constant. This477
leads to the following stationary conditions.478

THEOREM 3.4. The stationary conditions of the path for the action (3.17) are479

∂tλ+ (Dλ)v + λdiv (v) = (∇ψ)−1∇U(φ)(3.18)480

ρv + (∇ψ)λ = 0(3.19)481482
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where ∇U(φ) ∈ TφDiff(Rn) denotes the functional gradient of U with respect to φ, and ∇ψ are spatial gradients.483
The original constraint (3.7) on the mapping is part of the stationary conditions.484

Proof. The computation is similar to the non-constant density case Appendix 6.2. Note that stationary condition485
with respect to the mapping remains the same as the density constraint in the non-constant density case does not486
depend on the mapping. The stationary condition with respect to the velocity avoids the variation with respect to the487
density constraint in the non-constant density case, and remains the same except for the last term.488

As before, we can solve for the velocity evolution directly. This results in the following result.489

THEOREM 3.5 (Evolution Equations for the Path of Least Action). The stationary conditions for the path of the490
action integral (3.6) with kinetic energy (3.16) subject to the constraint (3.2) on the mapping is given by the forward491
evolution equation492

(3.20) ∂tv = −(Dv)v − (∇v)v − vdiv (v)− 1

ρ
∇U(φ).493

The forward evolution equation for the diffeomorphism is given by (3.2), and that of its inverse mapping is given by494
(3.7).495

Proof. We can apply Lemma 6.5 in Appendix 6.3 with w = − 1
ρv.496

The former equation (3.20) (without the potential term) is known as the Euler-Poincaré equation (EPDiff), the geodesic497
equation for the diffeomorphism group under the L2 metric [41]. This shows that one relationship between Euler’s498
equation and EPDiff is that Euler’s equation is derived by a time-varying density in the kinetic energy, which is499
optimized over the mass distribution along with the velocity whereas EPDiff assumes a constant mass density in the500
kinetic energy. The non-constant density model (arising in Euler’s equation) has a natural interpretation in terms of501
Newton’s equations.502

3.2. Acceleration with Energy Dissipation. We now present the case of deriving the stationary conditions for503
a system on the manifold of diffeomorphisms in which total energy dissipates. This is important so the system will504
converge to a local minima, and not oscillate about a local minimum forever, as the evolution equations from the505
previous section. To do this, we consider time varying scalar functions a, b : [0,∞) → R+, and define the action506
integral, again defined on paths of diffeomorphisms, as follows:507

(3.21) A =

∫
[atT (vt)− btU(φt)] dt,508

where at, bt denote the values of the scalar at time t. We may again go through finding the stationary conditions509
subject to the mapping constraint (3.7) and the continuity equation constraint (3.4), with Lagrange multiplier and then510
derive the forward evolution equations. The final result is as follows:511

THEOREM 3.6 (Evolution Equations for the Path of Least Action). The stationary conditions for the path of the512
action integral (3.21) subject to the constraints (3.2) on the mapping and the continuity equation (3.4) are given by513
the forward evolution equation514

(3.22) a∂tv + a(Dv)v + (∂ta)v = − b
ρ
∇U(φ),515

which describes the evolution of the velocity. The same evolution equations as Theorem 3.2 for the mappings (3.2) and516
(3.7), and density hold (3.4).517

Proof. See Appendix 6.4.518

If we consider certain forms of a and b, then one can arrive at various generalizations of Nesterov’s schemes. In519
particular, the choice of a and b below are those considered in [63] to explain various versions of Nesterov’s schemes,520
which are optimization schemes in finite dimensions.521

THEOREM 3.7 (Evolution Equations for the Path of Least Action: Generalization of Nesterov’s Method). If we522
choose523

at = eγt−αt and bt = eαt+βt+γt524
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where525

αt = log p− log t, βt = p log t+ logC, γt = p log t,526

C > 0 is a constant, and p is a positive integer, then we will arrive at the evolution equation527

(3.23) ∂tv = −p+ 1

t
v − (Dv)v − 1

ρ
Cp2tp−2∇U(φ).528

In the case p = 2 and C = 1/4 the evolution reduces to529

(3.24) ∂tv = −3

t
v − (Dv)v − 1

ρ
∇U(φ).530

The case p = 2 was considered in [63] as the continuum equivalent to Nesterov’s original scheme in finite dimensions.531
We can notice that this evolution equation is the same as the evolution equations for the non-dissipative case (3.13),532
except for the term −(3/t)v. One can interpret the latter term as a frictional dissipative term, analogous to viscous533
resistance in fluids. Thus, even in this case the equation has a natural interpretation that arises from Newton’s laws.534

Thus, the final system of equations (with general a, b) that are to be discretized and used in a numerical imple-535
mentation is536

∂tφ = v ◦ φ(3.25)537

∂tv = −∂ta
a
v − (Dv)v − 1

ρ

b

a
∇U(φ),(3.26)538

∂tρ = −div (ρv)(3.27)539

v(0, x) = v0(x)(3.28)540

φ(0, x) = x(3.29)541

ρ(0, x) = ρ0(x),(3.30)542543

which is an Eulerian description of the accelerated motion. The numerical algorithm is given in Algorithm 6.1 in the544
Appendix.545

We show an experiment in Figures 2a, 2b and 3 to conceptually illustrate the accelerated evolution. Here, we study546
a simple optical flow problem whose potential is a standard Horn& Schunck loss (see (3.32)). We show the evolution,547
which aims to register a square to a translated square (see Figure 3). We compare the evolutions for acceleration548
with and without damping, both which introduce oscillations, but the former dies down. The evolutions eventually549
determine a translation, even though the velocity can vary with pixel. Notice the mass density evolves through non-550
uniform densities at times, indicating a non-trivial mass evolution impacting the dynamics. A comparison to gradient551
descent is shown in Figure 3, in particular showing that acceleration drastically speeds up convergence.552

3.3. Second Order PDE for Acceleration. We now convert the system of PDE for the forward mapping and553
velocity into a second order PDE in the forward mapping itself, which constitutes the Lagrangian description of the554
accelerated motion. Interestingly, this eliminates the non-linearity from the non-potential terms.555

THEOREM 3.8 (Second Order PDE for the Forward Mapping). The accelerated optimization, arising from the556
stationarity of the action integral (3.21), given by the system of PDE defined by (3.22) and the forward mapping (3.2)557
is558

(3.31) a
∂2φ

∂t2
+ (∂ta)

∂φ

∂t
+

b

ρ0
∇̃U(φ) = 0,559

where ρ0 is the initial density, ∇̃U(φ) = [∇U(φ) ◦ φ] det∇φ is the gradient defined on the un-warped domain, i.e.,560

δA · δφ =
∫
Rn ∇̃U(φ)(x) · δφ(x) dx is satisfied for all perturbations δφ of φ.561
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(a) Illustrative experiment: The experiment (whose results are in Fig. 2b and 3) computes the optical flow (registration) between I0
and I1 using a common optical flow loss function. The initial residual (|I1 − I0|) is shown. The fourth image from left is a color
code for the velocity (the direction of the velocity is indicated by the color and the intensity of color indicates magnitude). The fifth
image is a color code for the mass density graphs used in Figure 2b.

(b) Comparison of evolutions of accelerated optimization with and without friction. The four rows are the density ρt#φt, velocity
v ◦ φt, image warp I1 ◦ φ and residual |I0 − I1(φ)| for the undamped and damped accelerated descents over various iterations.
Notice that the undamped descent overshoots the target and switches directions as evidenced by the shift in the velocity from orange
to blue; it continues to oscillate indefinitely. The addition of a friction term kills the oscillations, allows convergence and for the
minimization of the residual as shown. Notice that in both cases, the mass moves within and around the square in non-trivial ways,
different than constant density. Each are initialized with a constant density and at convergence, the density is also constant.
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Fig. 3: Comparison of evolutions of gradient descent and accelerated gradient descent. I1(φ) and the residual are
shown throughout the evolution. As can be seen, acceleration converges in far fewer iterations (gradient descent
eventually converges, on the order of k ≈ 3× 107 iterations). See Section 4.1.2 for details of experimental setup.

Proof. We differentiate the definition of the forward mapping in time to obtain (3.2) and substituting the velocity562
evolution (3.22):563

∂ttφ = (∂tv) ◦ φ+ [(Dv) ◦ φ]∂tφ564

= −[(Dv) ◦ φ]v ◦ φ− ∂ta

a
v ◦ φ− b

a

1

ρ ◦ φ
∇U(φ) ◦ φ+ [(Dv) ◦ φ]∂tφ565

= −∂ta
a
∂tφ−

b

a

1

ρ ◦ φ
∇U(φ) ◦ φ.566

567

We note the following for any B ⊂ Rn, because of mass preservation, we have that568 ∫
B

ρ0(x) dx =

∫
φ(B)

ρt(y) dy =

∫
B

ρt(φ(x)) det∇φ(x) dx,569

where the last equality is obtained by a change of variables. Since we can take B arbitrarily small, ρ0(x) =570
ρt(φ(x)) det∇φ(x). Using this last formula, we see that571

1

ρ ◦ φ
∇U(φ) ◦ φ =

1

ρ0
∇̃U(φ),572

which proves the proposition.573

Note that the advantage of this Lagrangian approach is that the evolution of the mass has been eliminated, mak-574
ing for a simpler implementation. The advantage of the Eulerian formulation, however, is that it more easily allows575
for more general mass flow models than considered in this paper (see [68, 67]), which may not have as simple La-576
grangian formulation. The discrete implementation is discussed in Appendix 6.6 and the implementation is shown in577
Algorithm 6.2.578

In the case that ∇U is linear, the PDE is a vector-valued version of the PDE considered in [8], which has been579
analyzed in terms of numerical discretization and convergence rate [8]. In particular, [8] show that the PDE has an580
exponential convergence rate, which is equivalent to the rate shown in the ODE case by [63]. As we will see below,581
in cases of interest, the gradient will not be linear. However, the analysis may approximate what happens within the582
basin of a local minimum, where the gradient can be approximated as linear.583
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3.4. Illustrative Potential Energy for Diffeomorphisms. We now consider a standard potential for illustrative584
purposes in simulations, and derive the gradient. The objective is for the evolution equations in the previous section585
to minimize the potential, which is a function of the mapping. Our evolution equations in the previous section are586
general and work with any potential; our purpose in this section is not to advocate a particular potential, but to show587
how the gradient of the potential is computed so that it can be used in the evolution equations in the previous section.588
We consider the standard Horn & Schunck model for optical flow defined as589

(3.32) U(φ) =
1

2

∫
Rn
|I1(φ(x))− I0(x)|2 dx+

1

2
α

∫
Rn
|∇(φ(x)− x)|2 dx,590

where α > 0 is a weight, and I0, I1 are images. The first term is the data fidelity which measures how close φ deforms591
I1 back to I0 through the squared norm, and the second term penalizes non-smoothness of the displacement field,592
given by φ(x)− x at the point x. Notice that the potential is a function of only the mapping φ, and not the velocity.593

We now compute the functional gradient of U with respect to the mapping φ, denoted by the expression ∇U(φ).594
This gradient is defined by the relation (see Appendix 6.1) δU · δφ =

∫
φ(Rn)

∇U(φ) · δφdx, i.e., the functional595

gradient satisfies the relation that the L2 inner product of it with any perturbation δφ of φ is equal to the variation of596
the potential U with respect to the perturbation δφ. With this definition, one can show that (see Appendix 6.1)597

(3.33) ∇U(φ) = [(I1 − I0 ◦ ψ)∇I1 − α(∆φ) ◦ ψ] det∇ψ,598

where det denotes the determinant.599
We can also see that the gradient defined on the un-warped domain is600

(3.34) ∇̃U(φ) = (I1 ◦ φ− I0)∇I1 ◦ φ− α∆φ,601

therefore, the generalization of Nesterov’s method on the original domain itself, in this case is602

(3.35)
∂2φ

∂t2
+

3

t

∂φ

∂t
− α

ρ0
∆φ+

1

ρ0
(I1 ◦ φ− I0)∇I1 ◦ φ = 0,603

which is a damped wave equation.604

4. Experiments. We conduct experiments to illustrate the behavior of accelerated gradient descent (6.33) and605
compare it to gradient descent, and then illustrate the advantage of acceleration gradient descent against a standard606
optimizer for optical flow on a benchmark dataset. We demonstrate proof-of-concept of accelerated optimization607
using the Eulerian approach (3.25)-(3.30) in Section 4.1 and then demonstrate the Lagrangian approach (3.31) in608
Section 3.31 against standard optical flow optimization.609

4.1. Eulerian Approach. In our first set of experiments (Sub-sections 4.1.1 to 4.1.3), we compare the discrete610
implementation of the Eulerian approach ((4.1.1)) to accelerated optimization on the manifold of diffeomorphisms to611
standard (Riemannian L2) gradient descent. This will illustrate how much one can gain by incorporating acceleration,612
which requires little additional effort over gradient descent. Over gradient descent, acceleration requires only to613
update the velocity by the velocity evolution in the previous section, and the density evolution. Both these evolutions614
are cheap to compute since they only involve local updates. Note the gradient descent of the potential U is given615
by choosing v = −∇U(φ), the other evolution equation for the mapping φ (3.2) and ψ (3.7) remains the same, and616
the density evolution is not performed since standard gradient descent does not have a concept of mass. We note617
that we implement the equations as they are, and there is no additional processing that is now common in optical618
flow methods (e.g., no smoothing images nor derivatives, no special derivative filters, no multi-scale techniques, no619
use of robust norms, median filters, etc) to illustrate the advantage of the optimizer. Although our equations are for620
diffeomorphisms on all of Rn, in practice be have finite images, and the issue of boundary conditions come up. For621
simplicity to illustrate our ideas, we choose periodic boundary conditions. Our numerical scheme is used in these622
experiments are given in Appendix 6.5. Our intention is to show that simply by using acceleration, one can get an623
impractical algorithm (gradient descent) to become practical, especially with respect to speed.624

In our first set of experiments (Sub-sections 4.1.1 to 4.1.3), we choose the step size to satisfy CFL conditions. For625
ordinary gradient descent we choose ∆t < 1/(4α), for accelerated gradient descent we have the additional evolution626
of the velocity (3.24), and our numerical scheme has CFL condition ∆t < 1/maxx∈Ω{|v(x)|, |Dv(x)|}. Also,627
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Fig. 4: Convergence Comparison: Two binary images with squares in which the square is translated are registered.
The value of the functional (to be minimized) versus the iteration number is shown for both gradient descent (GD) and
accelerated gradient descent (AGD).

because there is a diffusion according to regularity, we found that ∆t < 1/(4α · maxx∈Ω{|v(x)|, |Dv(x)|}) gives628
stable results. The step size for accelerated gradient descent is lower in our experiments than accelerated gradient629
descent. The initialization is φ(x) = ψ(x) = x, v(x) = 0, and ρ(x) = 1/|Ω| where |Ω| is the area of the domain of630
the image. The algorithm implemented is shown in Algorithm 6.1.631

4.1.1. Convergence analysis. In this experiment, the images are two white squares against a black background.632
The sizes of the squares are 50× 50 pixels wide, and the square (of size 20× 20) in the first image is translated by 10633
pixels to form the second image. Small images are chosen due to the fact gradient descent is too impractically slow634
for reasonable sized images without multi-scale approaches that even modest sized images (e.g., 256 × 256) do not635
converge in a reasonable amount of time, and we will demonstrate this in an experiment later. Figure 4 shows the plot636
of the potential energy (3.32) of both gradient descent and accelerated gradient descent as the evolution progresses.637
Here α = 5 (images are scaled between 0 and 1). Notice that accelerated gradient descent very quickly accelerates to638
a global minimum, surpasses the global minimum and then oscillates until the friction term slows it down and then it639
converges very quickly. Notice that this behavior is expected since accelerated gradient descent is not a strict descent640
method (it does not necessarily decrease the potential energy each step). Gradient descent very slowly decreases the641
energy each iteration and eventually converges.642

We now repeat the same experiment, but with different images to show that this behavior is not restricted to the643
particular choice of images, one a translation of the other. To this end, we choose the images again to be 50 × 50.644
The first image has a square that is 17× 17 and the second image has a rectangle of size 20× 14 and is translated by645
8 pixels. We choose the regularity α = 2, since the regularity should be chosen smaller to account for the stretching646
and squeezing, resulting in a non-smooth flow field. A plot of results of this simulation is shown in Figure 5. Again647
accelerated gradient accelerates very quickly at the start, then oscillates and the oscillations die down and then it648
converges. This time the potential does not go to zero since the final flow is not a translation and thus the regularity649
term is non-zero. Gradient descent converges faster than the case of translation due to larger α and thus larger step650
size. However, it appears to be stuck in a higher energy configuration. In fact, gradient descent has not fully converged651
- gradient descent is slow in adapting to the scale changes and becomes extremely slow in stretching and squeezing652
in different directions. We verify that gradient descent has not fully converged by plotting just the first term of the653
potential, i.e., the reconstruction error, which is zero for accelerated gradient descent at convergence, indicating that654
the flow correctly reconstructs I0 from I1. On the other hand, gradient descent has an error of about 50, indicating the655
flow does not fully warp I1 to I0, and therefore it not the correct flow. This does not appear to be a local minimum,656
just slow convergence.657

We again repeat the same experiment, but with real images from a cardiac MRI sequence, in which the heart658
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Fig. 5: Convergence Comparison: Two images are registered, each are binary images. The first is a square and
the second image is a translated and non-uniformly scaled version of the square in the first image. [Left]: The cost
functional to be minimized versus the iteration number is shown for both gradient descent (GD) and accelerated
gradient descent (AGD). AGD converges to a lower energy solution quicker. [Right]: Note that GD did not fully
converge as the convergence is extremely slow in obtaining fine scale details of the non-uniform scaling. This is
verified by plotting the image reconstruction error: ‖I1 ◦ φ − I0‖, which shows that AGD reconstructs I0 with zero
error.

beats. The transformation relating the images is a general diffeomorphism that is not easily described as in the previous659
experiments. The images are of size 256×256. We choose α = 0.02. A plot of the potential versus iteration number for660
both gradient descent (GD) and accelerated gradient descent (AGD) is shown in the left of Figure 6. The convergence661
is quicker for accelerated gradient descent. The right of Figure 6 shows the original images and the images warped662
under both the result from gradient descent and accelerated gradient descent, and that they both produce a similar663
correct warp, but accelerated gradient obtains the warp in much fewer iterations.664

4.1.2. Convergence analysis versus parameter settings. We now analyze the convergence of accelerated gra-665
dient descent and gradient descent as a function of the regularity α and the image size. To this end, we first analyze666
an image pair of size 50× 50 in which one image has a square of size 16× 16 and the other image is the same square667
translated by 7 pixels. We now vary α and analyze the convergence. In the left plot of Figure 7, we show the number of668
iterations until convergence versus the regularity α. As α increases, the number of iterations for both gradient descent669
and accelerated gradient descent increase as expected since there is a inverse relationship between α and the step size.670
However, the number of iterations for accelerated gradient descent grows more slowly. In all cases, the algorithm is671
run until the flow field between successive iterations does not change according to a fixed tolerance. In all cases, the672
flow achieves the ground truth flow.673

Next, we analyze the number of convergence iterations versus the image size. To this end, we again consider674
binary images with squares of size 16× 16 and translated by 7 pixels. However, we vary the image size from 50× 50675
to 200 × 200. We fix α = 8. Now we show the number of iterations to convergence versus the image size. This is676
shown in the right plot of Figure 7. Gradient descent is impractically slow for all the sizes considered, and the number677
of iterations quickly increases with image size (it appears to be an exponential growth). Accelerated gradient descent,678
surprisingly, appears to have very little or no growth with respect to the image size. Of course one could use multi-679
scaling pyramid approaches to improve gradient descent, but as soon as one goes to finer scales, gradient descent680
is incredibly slow even when the images are related by small displacements. Simple acceleration makes standard681
gradient descent scalable with just a few extra local updates.682

4.1.3. Analysis of Robustness to Noise. We now analyze the robustness of gradient descent and accelerated683
gradient descent to noise. We do this to simulate robustness to undesirable local minima. We choose to use salt and684
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I1 I0

I1 ◦ φgd I1 ◦ φagd

Fig. 6: Convergence Comparison: Two MR cardiac images from a sequence are registered. The images are related
through a general deformation. [Left]: A plot of the potential versus the iteration number in the minimization using
gradient descent (GD) and accelerated gradient descent (AGD). AGD converges at a quicker rate. [Right]: The original
images and the back-warped images using the recovered diffeomorphisms. Note that I1 ◦ φ should appear close to I0.
Both methods seem to recover a similar transformation, but AGD recovers it faster.

Fig. 7: [Left]: Convergence Comparison as a Function of Regularity: Two binary images (a square and a translated
square) are registered with varying amounts of regularization α for gradient descent (GD) and accelerated gradient
descent (AGD). [Right]: Convergence Comparison as a Function of Image Size: We keep the squares in the images
and α = 3 fixed, but we vary the size (height and width) of the image and compare GD with AGD. Very quickly,
gradient descent becomes impractical due to extremely slow convergence.
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Fig. 8: Analysis of Stability to Noise: We add salt and pepper noise with varying intensity to binary images and then
register the images. We plot the error in the recovered flow of both gradient descent (GD) and accelerated gradient
descent (AGD) versus the level of noise. The value of α is kept fixed. The error is measured by the average endpoint
error of the flow. [Left]: The first image is formed from a square and the second image is the same square but translated.
[Right]: The first image is a square and the second image is the non-uniformly scaled and translated square. The error
is measured as the average image reconstruction error.

pepper noise to model possible clutter in the image. We consider images of size 50 × 50. We fix α = 1 in all the685
simulations and vary the noise level; of course one could increase α to increase robustness to noise. However, we are686
interested in understanding the robustness to noise of the optimization algorithms themselves rather than changing the687
potential energy to better cope with noise. First, we consider a square of size 16 × 16 in the first binary image and688
the same square translated by 4 pixels in the second image. We plot the error in the flow (measured as the average689
endpoint error of the flow returned by the algorithm against ground truth flow) versus the noise level. The result is690
shown in the left plot of Figure 8. This shows that accelerated gradient descent degrades much slower than gradient691
descent. Figure 9 shows visual comparison of the final results where we show I1 ◦ φ and compare it to I0 for both692
accelerated gradient descent and gradient descent.693

We repeat the same experiment to show that this trend is not just with this configuration of images. To this end,694
we experiment with 50×50 images one with a square of size 15×15 and a rectangle that is size 20×10 and translated695
by 5 pixels. We again fix the regularity to α = 1. The result of the experiment is plotted in the right of Figure 8. A696
similar trend of the previous experiment is observed: accelerated gradient descent degrades much less than gradient697
descent. Note we have measured accuracy as the average reconstruction error with the original (non-noisy) images.698
This is because the ground truth flow is not known. Figure 10 shows visual comparison of the final results.699

4.2. Lagrangian Approach and Comparison to Standard Optical Flow. We now test our method on the com-700
mon benchmark for optical flow problems, the Middlebury data set [4]. We now apply accelerated gradient descent701
to optical flow, using the Lagrangian formulation (3.2). The numerical discretization for this method is shown in Ap-702
pendix 6.6 and the algorithm is shown in Algorithm 6.2. We compare accelerated gradient descent to another general703
purpose optimizer (applicable to many variational cost functionals like our method) that is a common optimizer of704
choice in variational optical flow problems [52]. This optimizer works by iteratively linearizing optical flow around705
the current solution, solving the linear system typically through conjugate gradient. As is typical, a pyramid is used to706
solve the problem on coarse-scales efficiently, which is then upsampled to the next finer scale and is used as initial-707
ization to the aforementioned iterative linearization. We also apply this pyramid scheme in our accelerated scheme.708
We do not use other common techniques (e.g., median filtering, texture enchancement) for optical flow as we wish709
to understand the effect of the optimizers alone. We use a down-sampling factor of 2 for each level to construct the710
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Fig. 9: Visual Comparison on Square Translation in Noise Experiment. The above show the visual results of the
noise robustness experiment. For each row group of images: the two original images, the warped image by gradient
descent, and the warped image by accelerated gradient descent. The last two images should resemble the second if the
registration is correct.

I1 I0 I1 ◦ φgd I1 ◦ φagd I1 I0 I1 ◦ φgd I1 ◦ φagd

σ
=

0
.0
0

σ
=

0
.0
5

σ
=

0
.1
0

σ
=

0
.1
5

σ
=

0
.2
0

Fig. 10: Visual Comparison on Square Non-Uniform Scaling and Translation in Noise Experiment. The above
show the visual results of the noise robustness experiment. For each row group of images: the two original images, the
warped image by gradient descent, and the warped image by accelerated gradient descent. The last two images should
resemble the second if the registration is correct.

pyramid 4711
The optical flow data set [4] that was used in these experiments is the Middlebury dataset, a standard benchmark712

for optical flow, and can be found on https://vision.middlebury.edu/flow/data/. Images ranged in resolution from713
420x380 to 640x480, and consist of 7 real scenes with camera motion as well as object motion and deformation. The714
ground truth dense optical flow is provided in this dataset. The accuracy of the optical flow on this dataset is measured715
with the average angular error (AAE), which measures the average angular difference between the result and ground716

4Source code is publicly available: github.com/minasbenyamin/Diffeomorphisms.
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Fig. 11: Converged results for Linear Optical Flow and Accelerated Optical Flow run on the Middlebury data set. Both
methods converge to the same local minimum, with the advantage of accelerated being speed. Note the black areas
indicate occlusion, which are excluded from error computation according to the benchmark. Seven image pairs were
used for the experiment.

truth displacement vectors, and the average end point error (AEE), which measures the average difference between end717
points of the displacement vectors of the result and ground truth. The regularization was kept constant throughout the718
entire experiment for every image. We fix the coefficient on the regularizer α at 0.04 for both accelerated and linearized719
optical flow, which leads to the optimal accuracy for both methods. We compute the optical flow by minimizing the720
Horn & Schunck cost functional (3.32) for both optimizers.721

Run times (and errors in optical flow) for each pyramid level for both methods are shown in Table ??; we also dis-722
play the speed up factor giving the ratio of performance improvement in run time of accelerated over the linearization723
approach. Results are averages over the entire dataset. Both methods appear to converge to the same local minimum724
and thus have similar accuracy, but the Accelerated Optical Flow method has almost a 10x increase in speed over the725
standard linear approach and has a roughly 9.5x improvement in speed overall when the pyramid scheme is utilized.726
A time and accuracy breakdown for each level of the pyramid is given (note that each pyramid level uses as initializa-727
tion the result from the previous pyramid level). A visual illustration showing the converged results is also provided728
in Fig. 11, confirming that both methods converge to nearly the same local optimizer, with accelerated optical flow729
performing significantly better in speed.730

5. Conclusion. We have generalized accelerated optimization, in particular Nesterov’s scheme, to infinite di-731
mensional manifolds. This method is general and applies to optimizing any functional on an infinite dimensional732
manifold. We have demonstrated this for the class of diffeomorphisms motivated by variational optical flow problems733
in computer vision. The main objective of the paper was to introduce the formalism and derive the evolution equations734
that are PDEs. The evolution equations are natural extensions of mechanical principles from fluid mechanics, and in735
particular connect to optimal mass transport. They require additional evolution equations over gradient descent, i.e.,736
a velocity evolution and a density evolution, but that does not significantly add to the cost of L2 gradient descent per737
iteration since the updates are all local, i.e., computation of derivatives. Our numerical scheme to implement these738
equations used entropy conditions, which were employed to cope with shocks and fans of the underlying PDE. Ex-739
periments demonstrated the advantages of speed and robustness to local minima over gradient descent, and illustrated740
the behavior of accelerated gradient descent. Just by simple acceleration, gradient descent, unusable in practice due to741
scalability with image size, became usable. Improvements granted by acceleration are quite compelling when tested742
against standard state-of-the-art general purpose optimizers for optical flow. Our Accelerated Optical Flow method743
had a performance up lift of nearly a factor of 10 in speed.744

One area that should be explored further is the choice of the time-explicit functions a, b in the generalized La-745
grangian. These were chosen to coincide with the choices to produce the continuum limit of Nesterov’s scheme finite746
dimensions (and a constant damping was explored), which are designed for the convex case to yield optimal conver-747
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Middlebury Benchmark Results
Pyramid Level-1 (Res: 1/32) Time to Converge (sec): AAE (rad): AEE (pixels): Speed Up
Linearized Optical Flow 0.299 0.290 2.779
Accelerated Optical Flow 0.209 0.290 2.774 1.430
Pyramid Level-2 (Res: 1/16) Time to Converge (sec): AAE (rad): AEE (pixels): Speed Up
Linearized Optical Flow 0.476 0.150 1.679
Accelerated Optical Flow 0.296 0.150 1.685 1.608
Pyramid Level-3 (Res: 1/8) Time to Converge (sec): AAE (rad): AEE (pixels): Speed Up
Linearized Optical Flow 2.085 0.114 1.242
Accelerated Optical Flow 0.952 0.115 1.249 2.191
Pyramid Level-4 (Res: 1/4) Time to Converge (sec): AAE (rad): AEE (pixels): Speed Up
Linearized Optical Flow 7.862 0.102 1.045
Accelerated Optical Flow 2.279 0.102 1.046 3.450
Pyramid Level-5 (Res: 1/2) Time to Converge (sec): AAE (rad): AEE (pixels): Speed Up
Linearized Optical Flow 90.507 0.094 0.845
Accelerated Optical Flow 10.763 0.094 0.851 8.409
Pyramid Level-6 (Res: 1) Time to Converge (sec): AAE (rad): AEE (pixels): Speed Up
Linearized Optical Flow 1131.373 0.090 0.701
Accelerated Optical Flow 114.307 0.090 0.700 9.898
Cumulative (All Levels) Time to Converge (sec): AAE (rad): AEE (pixels): Speed Up
Linearized Optical Flow 1232.602 0.090 0.701
Accelerated Optical Flow 128.806 0.090 0.700 9.569

Table 1: Performance comparison of Linearized Optical Flow against Accelerated Optical Flow for each level of the
pyramid. The performance improvement of accelerated optical flow is close to an order of magnitude. Both methods
arrive at nearly the same local minima. AAE and AEE are average angular error and end point error respectively. Note
the quantities above represent average values over all pairs of images in the dataset.

gence. Since the energies that we consider are non-convex, these may no longer be optimal. Of interest would be748
a design principle for choosing a, b so as to obtain optimal convergence rates. A follow-up question would then be749
whether the discretization of the PDEs gives optimal rates in discrete-time. Another issue is that we assumed that750
the domain of the diffeomorphism was Rn, but images are compact; we by-passed this complication by assuming751
periodic boundary conditions in the Eulerian formulation. Future work will look into proper treatment of the boundary752
of compact regions that can evolve.753

6. Appendix.754

6.1. Functional Gradients.755

DEFINITION 6.1 (Functional Gradients). Let U : Diff(Rn) → R. The gradient (or functional derivative) of U756
with respect to φ ∈ Diff(Rn), denoted∇U(φ), is defined as the ∇U(φ) ∈ TφDiff(Rn) that satisfies757

(6.1) δU(φ) · v =

∫
φ(Rn)

∇U(φ)(x) · v(x) dx758

for all v ∈ TφDiff(Rn). The left hand side is the directional derivative and is defined as759

(6.2) δU(φ) · v :=
d

dε
U(φ+ εv)

∣∣∣∣
ε=0

.760

Note that (φ+ εv)(x) = φ(x) + εv(φ(x)) for x ∈ Rn.761

We now show the computation of the gradient for the illustrative potential (3.33) used in this paper. First, let us762
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consider the data term U1(φ) =
∫
Rn |I1(φ(x))− I0(x)|2 dx then763

δU1(φ)·δφ =

∫
Rn

2(I1(φ(x))−I0(x))DI1(φ(x))δ̂φ(x) dx =

∫
φ(Rn)

2(I1(x)−I0(ψ(x)))DI1(x)δφ(x) det∇ψ(x) dx,764

where δ̂φ = δφ◦φ, ψ = φ−1 and we have performed a change of variables. Thus,∇U1 = 2∇I1(I1− I0 ◦ψ) det∇ψ.765
Now consider the regularity term U2(φ) =

∫
Rn |∇(φ(x)− x)|2 dx, then766

δU(φ) = 2

∫
Rn

tr
(
∇(φ(x)− id)T∇δ̂φ(x)

)
dx = −

∫
Rn

∆φ(x)T δφ(x) dx =

∫
Ω

(∆φ)(ψ(x))T δφ(x) det∇ψ(x) dx.767

Note that in integration by parts, the boundary term vanishes since we assume that φ(x) = x as |x| → ∞. Thus,768
∇U2 = (∆φ) ◦ ψ det∇ψ.769

6.2. Stationary Conditions.770

LEMMA 6.2 (Stationary Condition for the Mapping). The stationary condition of the action (3.9) for the mapping771
is772

(6.3) ∂tλ+ div
(
vλT

)T
= (∇ψ)−1∇U(φ).773

Proof. We compute the variation of A (defined in (3.9)) with respect to the mapping φ. The only terms in the774
action that depend on the mapping are U and the Lagrange multiplier term associated with the mapping. Taking the775
variation w.r.t the potenial term gives776

−
∫ ∫

φ(Rn)

∇U(φ) · δφdxdt.777

Now the variation with respect to the Lagrange multiplier term:778 ∫ ∫
φ(Rn)

λT [∂tδ̂ψ +D(δ̂ψ)v] dx dt = −
∫ ∫

φ(Rn)

[∂tλ
T + div

(
vλT

)
]δ̂ψ dx dt,779

where we have integrated by parts, the div (·) of a matrix means the divergence of each of the columns, resulting in a780

row vector, and δ̂ψ = δψ ◦ ψ. Note that we can take the variation of ψ(φ(x)) = x to obtain781

δ̂ψ ◦ φ(x) + [Dψ(φ(x))]δ̂φ(x) = 0,782

or783
δ̂ψ(y) = −[Dψ(y)]δφ(y).784

Therefore,785

(6.4) δA · δφ =

∫ ∫
φ(Rn)

{
(∇ψ)

[
∂tλ+ div

(
vλT

)T ]−∇U(φ)
}
· δφdxdt.786

LEMMA 6.3 (Stationary Condition for the Velocity). The stationary condition of the action (3.9) arising from the787
velocity is788

(6.5) ρv + (∇ψ)λ− ρ∇µ = 0.789

Proof. We compute the variation w.r.t the kinetic energy:790

δT · δv =

∫
φ(Rn)

ρv · δv dx.791

The variation of the Lagrange multiplier terms is792 ∫ ∫
φ(Rn)

λT (Dψ)δv − ρ∇µ · δv dxdt =

∫ ∫
φ(Rn)

[(∇ψ)λ− ρ∇µ] · δv dxdt.793

Therefore,794

(6.6) δA · δv =

∫ ∫
φ(Rn)

[ρv + (∇ψ)λ− ρ∇µ] · δv dx dt.795
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LEMMA 6.4 (Stationary Condition for the Density). The stationary condition of the action (3.9) arising from the796
velocity is797

(6.7) ∂tµ+ (Dµ)v =
1

2
|v|2.798

Proof. Note that the terms that contain the density in (3.9) are the kinetic energy and the Lagrange multiplier799
corresponding to the density. We see that800

(6.8) δA · δρ =

∫ ∫
φ(Rn)

1

2
|v|2δρ− (∂tµ+∇µ · v)δρdxdt,801

which yields the lemma.802

6.3. Velocity Evolution.803

LEMMA 6.5. Given that (∇ψ)λ = w, we have that804

(6.9) ∂tλ+ (Dλ)v + λdiv (v) = (∇ψ)−1[∂tw + (Dw)v + (∇v)w + wdiv (v)]805

Proof. Define the Hessian as follows:806

[D2ψ]ijk = ∂2
xixjψ

k, [D2ψ(a, b)]k =
∑
ij

∂2
xixjψ

kaibj .807

We compute808

{D[(∇ψ)λ]}ij = ∂xj [(∇ψ)λ]i = ∂xj
∑
l

∂xiψ
lλl =

∑
l

(∂2
xjxiψ

lλl) + ∂xiψ
l∂xjλl.809

Therefore,810
D[(∇ψ)λ] = D2ψ(·, ·) · λ+ (∇ψ)(Dλ)811

Since D[(∇ψ)λ] = Dw then solving for Dλ gives812

Dλ = (∇ψ)−1[Dw −D2ψ(·, ·) · λ],813

so814

(6.10) (Dλ)v = (∇ψ)−1[(Dw)v −D2ψ(·, v) · λ].815

Now differentiating (∇ψ)λ = w w.r.t t, we have816

(∇∂tψ)λ+ (∇ψ)∂tλ = ∂tw, or ∂tλ = (∇ψ)−1[∂tw − (∇∂tψ)λ]817

Note that ∂tψ = −(Dψ)v so818

(6.11) ∂tλ = (∇ψ)−1 {∂tw +∇[(Dψ)v]λ} .819

Now computing∇[(Dψ)v] yields820

{∇[(Dψ)v)]}lk = ∂xl
∑
i

∂xiψ
kvi =

∑
i

∂xl∂xiψ
kvi + ∂xiψ

k∂xlv
i.821

Then multiplying the above matrix by λ gives822

{∇[(Dψ)v)]λ}l =
∑
ik

∂xl∂xiψ
kviλk + ∂xiψ

k∂xlv
iλk,823

which in matrix form is824

∇[(Dψ)v)]λ = D2ψ(·, v) · λ+ (∇v)(∇ψ)λ = D2ψ(·, v) · λ+ (∇v)w825

Therefore, (6.11) becomes826
∂tλ = (∇ψ)−1[∂tw +D2ψ(·, v) · λ+ (∇v)w].827

Combining the previous with (6.10) and noting that λdiv (v) = (∇ψ)−1wdiv (v) yields828

∂tλ+ (Dλ)v + λdiv (v) = (∇ψ)−1[∂tw + (Dw)v + (∇v)w + wdiv (v)].829
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LEMMA 6.6. If w = ρ(∇µ− v), then830

(6.12) ∂tw + (Dw)v + (∇v)w + wdiv (v) = −ρ[∂tv + (Dv)v].831

Proof. Differentiating w = ρ(∇µ− v), we have832

∂tw = (∂tρ)(∇µ− v) + ρ(∇∂tµ− ∂tv)833

Dw = (∇µ− v)(Dρ) + ρ[D(∇µ)−Dv].834835

Therefore,836

∂tw + (Dw)v + (∇v)w + wdiv (v) = (∇µ− v)(∂tρ+∇ρ · v) + ρ[∇∂tµ− ∂tv +D(∇µ)v − (Dv)v]837

+ ρ(∇v)(∇µ− v) + ρ(∇µ− v)div (v)838

= (∇µ− v)(∂tρ+∇ρ · v + ρdiv (v))839

+ ρ[∇∂tµ− ∂tv +D(∇µ)v − (Dv)v + (∇v)(∇µ− v)].840841

Note that ∂tρ+∇ρ · v + ρdiv (v) = ∂tρ+ div (ρv) = 0, due to the continuity equation. Therefore,842

∂tw + (Dw)v + (∇v)w + wdiv (v) = ρ[−∂tv − (Dv)v − (∇v)v +∇∂tµ+D(∇µ)v + (∇v)(∇µ)]843

= ρ {−∂tv − (Dv)v − (∇v)v +∇[∂tµ+ (Dµ)v]} .844845

By the stationary condition for the density, ∂tµ + (Dµ)v = 1/2|v|2, so ∇[∂tµ + (Dµ)v] = (∇v)v, which gives the846
lemma.847

THEOREM 6.7 (Velocity Evolution). The evolution equation for the velocity arising from the stationarity of the848
action integral is849

(6.13) ρ[∂tv + (Dv)v] = −∇U(φ).850

Proof. This is a combination of Lemmas 6.2, 6.5, and 6.6.851

6.4. Stationary Conditions for the Dissipative Case.852

THEOREM 6.8 (Stationary Conditions for the Path of Least Action: Dissipative Case). The stationary conditions853
of the path for the action854

A =

∫
[aT (v)− bU(φ)] dt+

∫ ∫
Rn
λT [∂tψt + (Dψ)v] dx dt−

∫ ∫
Rn

[∂tµ+∇µ · v] ρdxdt,(6.14)855
856

are857

∂tλ+ (Dλ)v + λdiv (v) = b(∇ψ)−1∇U(φ)(6.15)858

aρv + (∇ψ)λ− ρ∇µ = 0(6.16)859

∂tµ+∇µ · v =
1

2
a|v|2.(6.17)860

861

Proof. Note that862

∇[bU ](φ) = b∇U(φ)863

δ[aT ] · δρ =

∫
φ(Rn)

1

2
a|v|2δρdx864

δ[aT ] · δv =

∫
φ(Rn)

aρv · δv dx.865
866

Therefore, using (6.4) and replacing∇U(φ) with b∇U(φ), we have867

δA · δφ =

∫ ∫
φ(Rn)

{
(∇ψ)

[
∂tλ+ div

(
vλT

)T ]− b∇U(φ)
}
· δφdxdt,868

26

This manuscript is for review purposes only.



which yields the stationary condition on the mapping. Also, updating (6.6) yields869

δA · δv =

∫ ∫
φ(Rn)

[aρv + (∇ψ)λ− ρ∇µ] · δv dx dt,870

which yields the stationary condition for the velocity. Finally, updating (6.8) yields871

δA · δρ =

∫ ∫
φ(Rn)

1

2
a|v|2δρ− (∂tµ+∇µ · v)δρdxdt,872

and that yields the last stationary condition.873

THEOREM 6.9 (Evolution Equations for the Path of Least Action: Dissipative Case). The evolution equations for874
the stationary conditions of the action in (6.14) is875

(6.18) ρ[∂t(av) + a(Dv)v] = −b∇U(φ).876

Proof. Let w = ρ(∇µ− av) then877

∂tw = (∂tρ)(∇µ− av) + ρ(∇∂tµ− ∂t(av))878

Dw = (∇µ− av)(Dρ) + ρ[D(∇µ)− aDv].879880

Then881

∂tw + (Dw)v + (∇v)w + wdiv (v) = g(∇µ− av)(∂tρ+∇ρ · v) + ρ[∇∂tµ− ∂t(av) +D(∇µ)v − a(Dv)v]882

+ ρ(∇v)(∇µ− av) + ρ(∇µ− av)div (v)883

= (∇µ− av)(∂tρ+∇ρ · v + ρdiv (v))884

+ ρ[∇∂tµ− ∂t(av) +D(∇µ)v − a(Dv)v + (∇v)(∇µ− av)]885

= ρ {−∂t(av)− a(Dv)v − a(∇v)v +∇[∂tµ+ (Dµ)v]}886

= ρ {−∂t(av)− a(Dv)v} .887888

By Lemma 6.5 and the previous expression, we have our result.889

6.5. Discretization. We present the discretization of the velocity PDE (3.24) first. In one dimension, the terms890
involving v are Burger’s equation, which is known to produce shocks. We thus use an entropy scheme. Writing the891
PDE component-wise, we get892

∂tv1 = −1

2
∂x1(v1)2 − v2∂x2v1 −

3

t
v1 −

1

ρ
(∇U)1(6.19)893

∂tv2 = −1

2
∂x2

(v2)2 − v1∂x1
v2 −

3

t
v2 −

1

ρ
(∇U)2,(6.20)894

895

where the subscript indicates the component of the vector. We use forward Euler for the time derivative, and for896
the first term on the right hand side, we use an entropy scheme for Burger’s equation which results in the following897
discretization:898

(6.21) ∂x1(v1)2(x) ≈ max{v1(x), 0}2−min{v1(x), 0}2+min{v1(x1+∆x, x2), 0}2−max{v1(x1+∆x, x2), 0}2,899

where ∆x is the spatial sampling size, and the ∂x2(v2)2 follows similarly. For the second term on the right hand side900
of (6.19), we follow the discretization of a transport equation using an up-winding scheme, which yields the following901
discretization:902

(6.22) v2(x)∂x2
v1(x) ≈ v2(x) ·

{
v1(x1, x2)− v1(x1, x2 −∆x) v2(x) > 0

v1(x1, x2 + ∆x)− v1(x1, x2) v2(x) < 0
.903

With regards to the gradient of potential, if we use the potential (3.33), then all the derivatives are discretized using904
central differences, as the key term is a diffusion. The step size ∆t/∆x < 1/maxx{|v(x)|, |Dv(x)|}.905

27

This manuscript is for review purposes only.



The backward map ψ evolves according to a transport PDE (3.7), and thus an up-winding scheme similar to the906
transport term in the velocity term is used. For the discretization of the continuity equation, we use a staggered grid907
(so that the values of v are defined in between grid points and ρ is defined at the grid points). The discretization is just908
the sum of the fluxes coming into the point:909
(6.23)

− div (ρ(x)v(x)) ≈
2∑
i=1

[
−vi(x)

{
ρ(x) vi(x) > 0

ρ(x+ ∆xi) vi(x) < 0
+ vi(x−∆xi)

{
ρ(x−∆xi) v1(x−∆xi) > 0

ρ(x) v1(x−∆xi) < 0

]
,910

where ∆xi denotes the vector of the spatial increment ∆x in the ith coordinate direction, v1(x) denotes the velocity911
defined at the midpoint between (x1, x2) and (x1 + ∆x, x2), and v2(x) denotes the velocity defined at the midpoint912
between (x1, x2) and (x1, x2 + ∆x). The term ∂tρ(x) is discretized with forward Euler. This scheme is guaranteed913
to preserve mass.914

6.5.1. Implementation. The final algorithm to optimize the potential U is shown in Algorithm 6.1 for the Eule-915
rian implementation, which evolves the mass density. We have shown the algorithm in the general case of n dimen-916
sional data.917

Algorithm 6.1 φ = accelMassF low(I0, I1, α)

M,N, . . . = size(I0) // n-dimensional image
φ0 = meshgrid[0, ..,M ; 0, ..., N ; . . .]
v0 = [0]M×N×n
ρ0(x) = 1/(MN)[1]M×N // constant mass initialization
for k = 1, . . . ,K do

∆t = 1/(4α ·maxx{|v(x)|, |Dv(x)|})
Compute ∂xi(v

k
i )2 using (6.21) and vkj ∂xjv

k
i using (6.22) for all i, j 6= i

a = 3/t if t > 0, else a = 0 // damping factor
dvki (x) = − 1

2∂xi(v
k
i )2(x)−

∑
j 6=i v

k
j (x)∂xjv

k
i (x)− avki − 1

ρk(x)
∇[U(φk)]i

dρk(x) = −div
(
ρk(x)vk(x)

)
using (6.23)

φk+1(x) = φk(x) + ∆t · vk(φk(x))
vk+1(x) = vk(x) + ∆t · dvk(x)
ρk+1(x) = ρk(x) + ∆t · dρk(x)
t← t+ ∆t

end for
return φK // return final warp between images

6.6. Lagrangian Approach to Accelerated Optical Flow: Discretization and Choosing Damping.918

6.6.1. Discretization. We start by reviewing the discretization of gradient descent and then extend the technique919
to accelerated gradient descent. The gradient descent PDE of energy function U(φ) takes form:920

(6.24) ∂tφ = −∇U(φ)921

We can write the first order forward difference for the gradient descent above as:922

(6.25)
φ(x, t+ ∆t)− φ(x, t)

∆t
= −∇U923

this yields the gradient descent update as:924

(6.26) φn+1 = φn −∆t∇Un925

where φn(x) = φ(x, n∆t) is the nth sampling in time of φ.926
By contrast the accelerated descent PDE of the energy function (Lagrangian approach (3.31)) takes form (in case927

that ∂ta/a is a chosen to be constant and by abuse of notation labeled a, b/a = 1, and ρ0 = 1; this would be the case928
of constant damping as opposed to a time-varying damping in Nesterov’s method):929

(6.27) ∂ttφ = −a∂tφ−∇U(φ)930
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Applying central differences to the above, we arrive at931

(6.28)
φ(x, t+ ∆t)− 2φ(x, t) + φ(x, t−∆t)

∆t2
+ a

φ(x, t+ ∆t)− φ(x, t−∆t)

2∆t
= −∇U(x, t).932

With some manipulation we can derive the update equation. Treating φ(x, t+ ∆t) as φn+1, φ(x, t) as φn and φ(x, t−933
∆t) as φn−1 allows us to write the update of φ:934

(6.29) φn+1(x) =
2φn − (1− a∆t

2 )φn−1 −∆t2∇Un

1 + a∆t
2

935

with additional algebraic manipulation this gives:936

δφn =
2− a∆t

2 + a∆t
· δφn−1 − 2∆t2

2 + a∆t
· ∇Un(6.30)937

φn = φn−1 + δφn(6.31)938939

where φ is the forward map, n refers to the current iteration, ∆t is the time step, a is the damping coefficient, and940
∇Un is the energy gradient at iteration n. Here we write δφn as the increment to update φn−1, which gives a similar941
equation to the usual gradient descent update (with δφn replacing the gradient). The original derivation of the update942
equations can be found in [8], but is restated for convenience of the reader.943

In the case of the Horn & Schunck energy (3.32), the gradient of the energy is944

(6.32) −∇U = −∇I1 ◦ φ · (I1(φ)− I0) + α∆φ945

where ∇I1 ◦ φ =
[ δI(φ)

δx
δI(φ)
δy

]
denotes the spatial gradient of the image I1(φ) and α is the coefficient on the regularizer.946

Substituting into 6.30 gives the full update:947

(6.33) δφn =
2− a∆t

2 + a∆t
· δφn−1 +

2∆t2

2 + a∆t
·
(
−∇I1(φn(x)) · (I1(φn(x))− I0(x)) + α∆φn(x)

)
948

The maximum stable time step ∆t for the scheme (6.30), (6.31) above can be derived using Von Neumann anal-949
ysis. From [8], ∆t should be chosen as ∆t < 2√

Zmax
, where Zmax is the maximum value over all frequencies of950

the Fourier transform of the linearization of the homogeneous part of the gradient, ∇U . In the case of the Horn &951
Schunck energy, this corresponds to952

(6.34) ∆t <
2√

1 + 8α
,953

where the above is an approximation and we assume that the image is normalized to 1.954

6.6.2. Choosing the Damping Coefficient. Next we compute the optimal damping coefficient, a. To do this, we955
use results from [13], which computes the convergence rate of accelerated PDE as a function of the damping in the956
case that the energy is convex. The Horn & Schunck energy is not convex, however, the linearization of the gradient957
in the accelerated PDE corresponds to a convex energy that was analyzed in [13].958

The original accelerated PDE is:959

(6.35) ∂ttφ+ a∂tφ− α∆φ+ (I1 ◦ φ− I0)∇I1 ◦ φ = 0.960

We can linearize the non-linear term and compute the optimal damping. For simplicity (as we did not find much961
difference in the speed of overall convergence in our experiments), we simply treat the non-linear term as zero (which962
is true if φ is near the solution as I1 ◦ φ− I0 is close to zero; in practice we use a pyramid method where the solution963
is close to the optimal since it is initialized with the solution from the previous scale). In this case, the PDE reduces to964

(6.36) ∂ttφ+ a∂tφ− α∆φ = 0,965
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which is a vector-valued version of an equation analyzed in [13]. The optimal damping is given as966

(6.37) a = 2
√
αµ1967

where µ1 is the first Neumann eigenvalue of the Laplacian. The eigenvalue can be approximated as µ1 ≈ π2

A where A968
is the area of the image domain (width times height of the image). This gives the damping condition that we used for969
our experiments as:970

(6.38) a = 2
√
αµ1 ≈ 2

√
π2α

A
.971

6.6.3. Implementation. The algorithm for implementation of the Lagrangian approach for accelerated optimiza-972
tion is given in Algorithm 6.2. In contrast to linearized optical flow, typical in the optical flow literature, our algorithm973
does not require computing matrix inverses (e.g., solved with conjugate gradient). For comparison, we also show the974
corresponding Lagrangian gradient descent in Algorithm 6.3, which is not used in practice due to slow convergence975
in favor of linearized optical flow; the comparison shows that our accelerated optical flow requires just a few extra976
lines of code compared to simple gradient descent, without requiring matrix inverses, resulting in a faster converging977
algorithm than lineaized optical flow.978

Algorithm 6.2 φ = accelF low(I0, I1, a, α)

∆t = 2√
maxx |I0(x)|+8α

m,n = size(I0)

a = 2
√

π2α
MN // compute optimal damping

φ0 = meshgrid(0, . . . ,M ; 0, . . . , N)
δφ0 = [0]M×N×2

for k = 1, . . . ,K do
δφk = 2−a·∆t

2+a·∆t · δφk−1 − 2∆t2

2+a·∆t · ∇U(φk)
φk = φk−1 + δφk

end for
return φK // return final warp between images

Algorithm 6.3 φ = gradF low(I0, I1, a, α)

∆t = 2
maxx |I0(x)|+8α

M,N = size(I0)
φ0 = meshgrid(0, . . . ,M ; 0, . . . , N)
v0 = [0]M×N×2

for k = 1, . . . ,K do
δφk = −∆t · ∇U(φk)
φk = φk−1 + δφk

end for
return φK // return final warp between images
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