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Abstract

We consider regions of an image that exhibit smooth variation, and pose the question of characterizing
the “essence” of these regions that matters for visual recognition. Ideally, this would be a function of the
image that does not depend on viewpoint and illumination (an “invariant”), and yet is “discriminative.”
In this manuscript, we show that such an invariant exists. That is, one can compute deterministic func-
tions of the image that contain all the “information” present in the original image, except for the effects
of viewpoint and illumination, when the underlying three-dimensional shape of the scene is unknown. We
also show that such statistics are supported on a “thin” (one-dimensional) subset of the image domain,
and thus the “information” in an image that is relevant for recognition is sparse. Yet, from this thin set
one can reconstruct an image that is equivalent to the original up to a domain diffeomorphism and a
contrast transformation.

Preamble

In this manuscript we characterize the quotient of positive-valued Morse functions of the real plane under
diffeomorphic deformations of the domain and monotonic continuous transformations of the range. The
motivation comes from the desire to characterize functions of a grayscale image of an unknown scene that
are invariant to changes of viewpoint and illumination. Under the assumptions of Lambertian reflection,
changes of ambient illumination away from cast shadows and vignetting effects can be characterized by
monotonic continuous range transformation, also known as contrast functions. Under the same assumptions,
changes of viewpoint away from occluding boundaries can be characterized by Epipolar deformations of
the image domain, that are an infinite-dimensional subset of the group of plane diffeomorphisms implicitly
defined by the Epipolar constraint [I2]. This subset, however, is not a group, and its closure is the entire
group of diffeomorphisms. Thus, in order to define a function that is invariant to viewpoint and contrast,
in the absence of knowledge about the underlying three-dimensional shape of the scene, we characterize the
quotient with respect to domain diffeomorphisms and range contrast transformations. It is well known that
any function of an image that is invariant to viewpoint is also invariant to (three-dimensional, 3-D) shape,
in the sense that images produced from scenes that are deformed versions of each other are lumped into the
same equivalence class, so long as deformations do not produce self-occlusions. As already pointed out in
[21], this does not mean that one cannot recognize scenes that have different 3-D shape; it means that one
cannot do so by means of comparing invariants. Instead, shape has to be (implicitly or explicitly) inferred
as part of the recognition process, or marginalized if priors on shape were available. In this manuscript we
deal with viewpoint changes in the absence of singular perturbations due to occlusions or cast shadows. We
also assume that the images have infinite resolution. Both assumptions are unrealistic in practice; however,
the analysis of this simplified case is relevant to understanding the sparse nature of visual information (as
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we will see, the Attributed Reeb Tree is supported on a zero-measure subset of the image domain). Lifting
these assumptions is clearly important for engineering applications and is discussed at length in [20].

1 Introduction: Image Representations for Recognition

Visual recognition is difficult in part because of the large variability that images of a particular object exhibit
depending on eztrinsic factors such as vantage point, illumination, occlusions and other imaging artifacts.
The problem is only exacerbated when one considers object categories subject to considerable intrinsic
variability.

Attempts to “learn away” such variability and to tease out intrinsic and extrinsic factors result in ex-
plosive growth of the training requirement, so it is common to attempt to factor out as many of these
“nuisances” as possible in a “pre-processing” phase. Ideally, one would want a representation that is invari-
ant to nuisance factors, intrinsic or extrinsicﬂ and that is “sufficient” for the task at hand. Typical nuisances
in recognition are (a) viewpoint, (b) illumination, (c) visibility artifacts such as occlusions and cast shadows,
(d) quantization, noise and other unmodeled phenomenaﬂ The latter two are “non-invertible nuisances”,
in the sense that they cannot be “undone” in a pre-processing stage: For instance, whether a region of the
scene occludes another cannot be determined from an image alone, but can be ascertained as part of the
matching process [2]. Such non-invertible nuisances are beyond the scope of this paper, that focuses on the
former two: Can one devise image representations that are invariant to both viewpoint and illumination,
away from visibility artifactﬂ such as occlusions and cast shadows?

Viewpoint? Contrast? Both? ...

The answer to the question above is trivially “yes” as any constant function of the image meets the require-
ment. More interesting is whether there exists an invariant which is non-trivial, and even more interesting
is whether such an invariant is “sufficient,” in the sense of containing all and only the “information” that
the image contains for the purpose of the task. For the case of viewpoint, although earlier literature [4]
suggested that general-case view-invariants do not existEI it has been shown that it is always possible to
construct non-trivial viewpoint invariant functions of images for Lambertian objects of any shape [21]. For
instance, a (properly weighted) local histogram of the intensity values can be shown to be viewpoint invari-
ant. For the case of illumination, it has been shown [0] that general-case (global) illumination invariants do
not exist, even for Lambertian objects. However, there is a considerable body of literature [T}, 5] 3]E| dealing
with more restricted illumination models that induce monotonic continuous transformations of the image
intensities, a.k.a. contrast transformations. For instance, [I] show that the geometry of the level curves (the
iso-contours of the image), is contrast invariant, and therefore so is its dual, the gradient directionﬂ

But even if we restrict our attention to this more constrained illumination model, one can easily see
that what is invariant to viewpoint is not invariant to illumination, and vice-versa. So it seems hopeless
that we would be able to find anything that is invariant to both. However, we will show that under certain
conditions (i) viewpoint-illumination invariants do exist; (ii) they are a “thin set” i.e., they are supported
on a zero-measure subset of the image domain; finally, despite being thin, (iii) these invariants are sufficient,
in the sense that they are equivalent to the original data for any task that requires invariance to viewpoint
and contrast.

It is intuitive that discontinuities (edges) and other salient intensity profiles such as blobs and ridges are
important, although exactly how important they are for a given recognition task has never been elucidated
analytically. But what about regions with smooth variation? These would include shaded regions (Fig. [1)

1What constitutes a nuisance depends on the task at hand; for instance, sometimes viewpoint is a nuisance, other times it
is not, as in discriminating “6” from “9”.

2Note that we intend (a) and (b) to be absent of visibility artifacts, that are considered separately in (c).

3The case of visibility and quantization is addressed in [T9)].

4The results of [4] refer to functions of perspective projection of point ensembles, rather than images.

5Note that the image representation presented in these papers are not viewpoint invariant.

6This fact is exploited by many local representations used for recognition, such as SIFT [I1].



Figure 1: Regions of an image that exhibit smooth texture gradient are not picked up by local feature
detectors (Harris-affine, SIFT), and are over-segmented by most image segmentation algorithms. How do
we “capture” the essence of these regions that matters for recognizing an object regardless of its viewpoint
and illumination?

as well as texture gradients at scales significantly larger than that of the local detectors employed for the
structures just described. Feature selectors would not fire at these regions, and segmentation or super-pixel
algorithms would over-segment them placing spurious boundaries that change under small perturbations.
So, how can one capture the “information” that smooth variations contain for the purpose of recognition?
We articulate our contribution in a series of steps:

1. We assume that some image statistic (intensity, for simplicity, but could be any other region statistic)
is smooth, and model the image as a square-integrable function extended without loss of generality to
the entire real plane or - for convenience - to the sphere S2.

2. Again without loss of generality, we approximate the extended image with a Morse function.

3. We introduce the Attributed Reeb Tree (ART) ﬂ a deterministic construction that is uniquely deter-
mined from an image and is defined on a zero-measure subset of the image domain.

4. We show that computing viewpoint-invariant image statistics from the image itself (without knowledge
of the underlying 3-D scene) is equivalent to computing image statistics that are invariant to the entire
set of diffeomorphisms of the domain of the image.

5. We show that the ART is invariant to domain diffeomorphisms and contrast transformations, and
therefore a viewpoint-illumination invariantEl

6. Finally, we show that the ART is a not just an invariant, but it is the mazimal invariant, and it is
sufficient in the sense that it is equivalent to the original image up to a domain diffeomorphism and
contrast changeﬂ

The complexity of the ART, measured for instance by its coding length with respect to a code, or by its
entropy with respect to a prior, reflects the notion of “visual information” advocated by J. Gibson []], and
formalized in [19].

7A construction similar to ART has been proposed in [I7] for filtering, segmentation, and information retrieval. However,
the contribution of the current paper is not to merely to introduce this tree representation of the image, but to show that the
ART is a viewpoint/contrast sufficient statistic (see 4-8 above), which is not considered in [I7]. Also, we should mention that
the ART of an image essentially characterizes the connected components of the level sets of an image treated as a function,
and that a few of these connected components are considered in [I3]. However, such “extremal regions” are not not viewpoint
invariant; indeed, these regions co-vary with changes of viewpoint.

8Note that in [I0], invariants to the constrained case of affine domain changes and contrast changes are considered. Our
paper considers the general case of viewpoint changes.

9Note that this does not necessarily mean that a viewpoint-illumination invariant is a unique signature for an object. As
[21] have pointed out, different objects that are diffeomorphically equivalent in 3-D (i.e. they have equivalent albedo profiles)
yield identical viewpoint-invariant statistics. Discriminating objects that differ only by their shape can be done, but not by
comparing viewpoint-invariant statistics, as shown in [21].



Clearly this is only a piece of the puzzle. It would be simplistic to argue that our key assumption of
the image being a Morse function is made without loss of generality (Morse functions are dense in C?,
which is dense in L2, and therefore they can approximate any discontinuous, square-integrable function to
within an arbitrarily small error). Co-dimension one extrema (ridges, valleys) and discontinuities (edges)
are qualitatively different than regions with smooth variation and should be treated as such, rather than
generically approximated by “elongated blobs.” This is beyond our scope in this paper, where we restrict our
analysis to regions of images away from such structures. Our goal here is to show that viewpoint-illumination
invariants exist under a precise set of conditions, and to provide a proof-of-concept construction. Yet it is
interesting to notice that some of the most recent systems for face recognition [I8] and shape coding [?]
use a representation closely related to the ART. This paper’s contribution is theoretical; however, we
believe the theory will be useful in designing better visual recognition systems. For example, many of
the ideas presented in this paper have guided the design of an end-to-end visual recognition system [9]
(http://www.youtube.com/watch?v=cMv-McHw660).

2 Image Invariants

2.1 Invariance to Viewpoint and Illumination

Let S denote the set of closed, compact, smooth surfaces without boundary. The class S is an approximation
of the set of bounding surfaces of objects in the real world. We denote by ps : S — R, pg € A a function
representing the albedo of S € S. Our model for the image formation process is the following. Let Q C R?
denote the imaging plane. Given a viewpoint g € SE(3) (an element of the special Euclidean group of
rotations and translations in space) and an illumination (contrast) h € A which is a monotonic continuous
function h : RT — R™, we denote the process of image formation as a function F: S x Ax SE(3) x H — T
where Z = {I : 2 — R"} is the space of images:

I= F(Sap57gah)

More specifically, the value I of an image at the pixel location z € R? is given by a contrast-transformed
version of the albedo h o pg at a point in space with coordinates X € R3, I(z) = ho ps(X), and the spatial
coordinates X and the image coordinates x are related by a change of Euclidean coordinates to place the point
in the camera reference frame, followed by an ideal central projection 7 : R® — R?; X s (X /X3, Xo/X3),
so we have that z = 7(g(X)). We now define an invariant to viewpoint and contrast:

Definition 1. Let V be a set. A functional p : Range(F) C T — V is invariant to the space SE(3) x H
(viewpoint and contrast) provided that for each S € S and ps € A we have that

N(F(S7 p57g7h)) = M(F(S7 psvg/ah/))a fO?" all g7g/ € SE(3)7 and hyh/ EH.
The set V is called the set of invariants.

Definition 2. A non-trivial invariant p : Range(F) C T — V is an invariant such that there exists
Sa S'e S and ps,ps € § so that M(F(Sa PS5 )) 7é M(F(S/7p5"a K ))

Definition 3. A maximal invariant p is a (non-trivial) invariant such that u(F(S, ps,-,-)) # w(F (S, psr,-,+))
if F(S,ps,g,h) # F(5, 05,9, 1) forall g,g' € SE(3), h,h/ € H and S,5" € S.

Remark 1. A mazimal invariant is such that two images that are formed from different scenes do not have
the same invariant representation. Characterizing the mazximal invariant is important because any other
invariant is a function of it. [CHECK: IS IT THE OTHER WAY ARQUND? IT IS A FUNCTION OF ALL OTHER
INVARIANTS?]

Remark 2. [t is important to note that p is a functional defined on the set of two-dimensional images.
Because there are infinitely many surfaces S € S that can generate a given image I € Range(F), it is implicit
in the definition above that u also be invariant to all possible surfaces that generate the image I.


http://www.youtube.com/watch?v=cMv-McHw660

Note that by the definition, the invariant is a property of the object S C R3. It is unrealistic to expect
the existence of a non-trivial invariant for the entire group SF(3) since for large parallax (the translational
component of g € SE(3)) in general parts of the surface S will be occluded. Therefore, in order to obtain
non-trivial invariants, we must take into account occlusions in the definition, which needs a discussion of
image generation and visibility, which we do next.

2.2 Visibility

Given a viewpoint g = (R,T) € SE(3) (R € SO(3), T € R?) and an object S € S, the pinhole is at the
origin in R3, the imaging plane Q' C R? (an embedding of Q C R?) is at T and its orientation is determined
by R. A point X € Range(S) is visible from viewpoint g and the imaging plane ' if the line segment from
the origin to the point X intersects ' and (the line segment) does not intersect any point in Range(S)\{X}.
A camera projection 7 from a viewpoint g is a map from the visible points of the object S to Q given
by the point of intersection described earlier. Now we may refine our definition of viewpoint/illumination
invariance to take into account visibility.

Definition 4. Let V be a set. A functional p: Range(F) C T — V is invariant to viewpoint/illumination
provided that
H’(F(Sa Ps, 9, h)) = H’(F(Sa Ps, gl7 h/))a fO?” all hv h' e Ha

and for all S € S, g,9' € SE(3) such that S is visible from g and ¢'.

Remark 3. The definition of non-trivial and maximal invariant are the same as the definitions that do not
account for visibility except that “for all g, g’ € SE(3)” is replaced by “for all S € S, g,9’ € SE(3) such that

! »

S is visible from g and ¢'.

2.3 Viewpoint Induced Image Transformations

Since a viewpoint/illumination invariant is a function defined on images, in order to describe such invariants,
one must first describe the transformations between images induced by changes of viewpoint, which is the
goal of the present section.

Let us first start by ignoring visibility, which we will address shortly. In an effort to characterize the
smallest class of domain transformations induced by a change of viewpoint, we consider the subset of general
diffeomorphisms w : R? — R% 2z — w(z) = |[wy(z), wy(z)]” specified by the assumption of Lambertian
reflection and rigidity of the scene. From Lambertian reflection we that, if pg is the diffuse albedo, then
I(x) = p(X), were z = 7(X), is related to another image of the same scene, J(x), via J(z') = p(X), where
7’ = 7(g(X)) = w(x). Under the rigidity assumption g = (R,T) € SE(3),ie. T € R? and R € SO(3) is a
rotation matrix; more in general, for an uncalibrated camera [12], g € A(3), the affine group in R®. Away from
occlusions, we can represent the 3-D shape of the object as the graph of a function, for instance X = ZZ(z)
for a function Z : R? — R*, where the bar indicates the homogeneous coordinatization z = [z1, z2, 1]7
Therefore, we have

¥ =w(x)=7m(RzZ(z)+T), v €Q (1)

where z € 2 C R? is the (subset of the) domain for which no (self-)occlusions occur. This limits the range
of motions (R,T) depending on the shape Z(-), which is unknown.
It can be easily shown that the set of diffeomorphisms of the form is given by

W = {w:R? - R? |(w(x), TRZ) = 0, for some (R,T) € A(3)}. (2)

The derivation is in Appendix The 3 x 3 matrix TR is a fundamental matriz [12] (it is an essential matriz
when the cameras are calibrated and hence (R,T') € SE(3)).

If W was a group under composition, then the maximal image invariant to viewpoint/contrast would be
the orbit space, S/(H x W). Unfortunately, however, in general W is not a group.



Theorem 1 (Epipolar diffeomorphisms do not form a group). Let w1 = w(z|R1,71,Z1) € W and we =
w(z|Re, Ta, Z2) € W. Then ws = wy o wa is not, in general, an element of W.

The proof is in Appendix [A]

Remark 4. Note that if both wi,ws € W are known to come from the same scene, then wy o wes € W.
However, because w1 and wy could be induced by different scenes, the composition is generally not an el-
ement of W, and therefore an invariant has to quotient out the entire group closure of epipolar domain
transformations.

We now show that the group closure, i.e., the smallest group containing W, under composition is the
general set of diffeomorphisms, and this fact will be used in the next section. First, we introduce a restricted
subset of W under which visibility conditions are satisfied:

W={w:QcR>—=R%z—wRT,2)|32 ()| R2Z(z)+ T = w(z)Z' (w(z)) ¥ z € Q}. (3)

The following theorem, proved in Appendix shows that the closure of W is the entire set of diffeomor-
phisms:

Theorem 2. The group closure (i.e., the smallest group containing W) is the entire set of (orientation
preserving) diffeomorphisms of the plane.

3 Maximal Viewpoint /Contrast Invariant

In this section, we are interested in giving a classification of the set of two-dimensional images under the
equivalence of domain diffeomorphism and contrast changes, that is, we classify the set of images in which
two images are equivalent if they are related by a domain diffeomorphism and/or contrast change. Note that
if one wants to use viewpoint-invariant statistics, computed independently on the template and target images
for image matching, and compare such invariants directly, then necessarily one has to quotient out all possible
surfaces of the scene that could have generated the image (since we do not know the surface associated to
the image from the image alone). By Theorem [2 in the previous section, this entails quotienting out the
set of images by the entire group of diffeomorphisms. Thus, classifying the set of images under domain
diffeomorphisms/contrast changes classifies the maximal viewpoint/illumination invariant, which we wish to
seek. The price for doing this, as is well known (see [21]), is the loss of shape discrimination. The benefit is
that, at decision time, one just compares statistics, as opposed to having to solve an optimization problem
(to find the epipolar transformation that brings the target image into correspondence with the template),
or to compute a complex integral (to marginalize all possible scenes according to their prior probability; it
should be noted that the set of shapes is hard to even describe analytically and endow with a metric, let
alone a suitable probability measure, and learning a prior on it).

3.1 DMorse Functions As Image Approximations
For simplicity, we will represent an image by a function on the plane: f: R? — R*.

Definition 5 (Morse function). A Morse function f : R?> — R*:z — f(x) is a C? smooth function
such that all critical points are non-degenerate. A critical point is a location x € R? where the gradient
vanishes, V f(x) = 0. A non-degenerate critical point is a critical point x where the Hessian is non-singular,

det(V2f(x)) #0.

Remark 5. Morse functions cannot have ridges, valleys and other critical structures of co-dimension one,
although they can approximate them to an arbitrary degree. We will address the relevance of this restriction

in Remark[T]] in Section [5]).

To further simplify matters in our classification of images, we assume that the functions we consider fall
in the following class



Definition 6 (F). A function f:R?* — R is in class F (f € F) iff
1. f is Morse
2. the critical values of f (corresponding to critical points of f) are distinct
3. each level set (i.e. L,(f) = {z € R?: f(z) = a} for a € R") of f is compact,
4. limyg sy f(2) > f(y) Vy € R? or limj, 400 f(2) < fy) Vy € R,
5. there exists an a € RY so that Lo(f) is a simple closed contour that encloses all critical points of f

Remark 6. If f € F, then we may identify f with a Morse function f : S2 — Rt defined on the sphere,
S? wia the inverse stereographic projection from the south pole, p. We then extend f to the south pole, —p,
by defining f(—p) = lim|y|— 400 f(x), which will be either the global minimum or mazimum of f. From now
on in this article, we make this identification and any f € F will be represented as a Morse function on S
such that its global minimum or maximum is at the south pole.

Conditions 1 and 2 make the class F stable under small perturbations (e.g. noise in images); we will
make this notion of stability more precise in Remark[13 in Section [37)

Remark 7. Images (e.g. the continuum version of digital images) are usually defined on a compact rectan-
gular domain (e.g. [0,1]x[0,1]). We may extend such a Morse function, g : [0,1]x[0,1] = RT (with minimal
distortion), to one that satisfies Condition 3-5 as follows. Let ¢ C [0,1] x [0, 1] denote a smooth simple closed
curve that is arbitrarily close (say wrt a geometric L distance) to the boundary 0([0,1] x [0,1]). Define

b:R— 1R as ,
be(z) = {e"p (-5) w>0

T exp (—x%) z <0.
Then the extended function f : R%2 — Rt is

Fa) = {g(r)be(dz‘stc(x)) © is inside ¢

be(—dist.(x)) x is outside ¢

where dist.(x) is the distance from x to the curve c.

Now consider the set of surfaces that are the graph of a function in F,

S={{(z,f(2)|z €S} | f € F}. (4)

The set of monotonic continuous functions, also called contrast functions in [5], is indicated by
- 2(R+. R+ dh +
H={heC*R ;R)\O<E<oo,teR }. (5)

Contrast functions form a group under function composition, and therefore each surface in S that is the graph
of a function f forms an orbit (equivalence class) of surfaces that are different from the original one, but
related via a contrast change. We indicate this equivalence class by [f]y = {ho f | h € H}. The topographic
map of a surface is the set of connected components of its level curves, 8’ = {{z | f(z) = A}, € Rt}; it
follows from Proposition 1 and Theorem 1 on page 11 of [5] that the orbit space of surfaces S modulo H is
given by their topographic map,

S =S8/H. (6)

In other words, the topographic map is a sufficient statistic of the surface that is invariant to contrast
changes. Or, all surfaces that are equivalent up to a contrast change have the same topographic map. Or,
given a topographic map, one can uniquely reconstruct a surface up to a contrast change [B].



Remark 8. In the context of image analysis, where the domain of the image is a rectangle (for instance a
continuous approximation of the discrete lattice D = [0, 640] x [0,480] C Z?) and f(x) is the intensity value
recorded at the pizel in position x € D, usually between 0 and 255, contrast changes in the image are often
considered as a first-order approrimation of illumination changes in the scene away from visibility artifacts
such as cast shadows. Therefore, the topographic map, or dually the gradient direction %, s equivalent
to the original image up to contrast changes, and represents a sufficient statistic that is invariant to h.

Now consider the set of domain diffeomorphisms of functions in F:
W = {w € C*(R%R?) : a diffeomorphism} =
{w € C*(S*S?) : a diffeomorphism s.t. w(c) = o, ¢ is the south pole } (7)

which is a group under composition, and therefore each surface determined by f generates an orbit [f]yy =
{fow | w e W}. If we consider the product group of contrast functions and domain diffeomorphisms we
have the orbits [f] = {ho fow | h € H,w € W}. The goal of this manuscript is to characterize these
equivalence classes. In other words, we want to characterize the orbit space

S" =8 /W =8/{H x W} (8)
of surfaces that are equivalent up to domain diffeomorphisms and contrast functions.

Remark 9. In the above it is important to note that the orbit space above is defined algebraically, and that
the group H x W acts on the set S. Therefore, the quotient we seek above is just a set, and we do not seek
to characterize the topology of the resulting quotient.

Remark 10. As one can check easily, it turns out that the orbit space S/{H x W} is the set of maximal
viewpoint /illumination invariants according to our definition of illumination change (a contrast change). See
Definition[3 to recall the definition of mazimal invariant.

Remark 11. The quotient above — if it is found to be non-trivial — is a sufficient statistic of the image that
is invariant to viewpoint and illumination.

3.2 Reeb Graphs: Towards Viewpoint/Contrast Invariants

We now introduce Reeb graphs [16], and their basic properties. Reeb graphs, as will be apparent in the next
sections, will be the basis for the construction of viewpoint/contrast invariants of images.

Definition 7 (Reeb Graph of a Function). Let f : S? — R be a continuous function. We define

Reeb(f) = {[(z, f(x))] : = € §%}

where

(y, f(v)) € [(z, f(2))]iff f(z) = f(y) and there is a continuous path from = toy in f~1(f(x)).

In other words, the Reeb graph of a function f is the set of connected components of level sets of f (with the
additional information of the function value of each level set). We now recall some basic facts about Reeb
graphs.

Lemma 1 (Reeb graph is connected). If f : S? — R is a function, then Reeb(f) is connected.

Proof. Reeb(f) is the quotient space of S? under the equivalence relation defined in Definition [7, Therefore,
by definition we have a surjective continuous map 7 : S — Reeb(f), and connectedness is preserved under
continuous maps. O



Lemma 2 (Reeb Tree). The Reeb graph of a surface in S that is the graph of a function f does not contain
cycles.

Proof. Let m: S? — Reeb(f) be the quotient map. We prove that Reeb(f) has no cycles. Assume Reeb(f)
has a cycle, i.e., there exists « : [0, 1] — Reeb(f), continuous with v(0) = (1), and we can assume that = is
one-to-one on [0,1). We may then lift v to a continuous path, 4 : [0,1] — S? that satisfies 4(0) = 4(1) and

Toy =1y
1. If 4(0) # #4(1), then since (§(0
path p: [1,2] — S? such that

), £(3(0))) € [5(1), £(#(1))], we have that there must exist a continuous
p(1) = p(0) and fop= f(5(0)) = f(§(1)). Then 7 : [0,2] — S? where

s ={ 0 15

pt) t>1
satisfies 4(0) = 4(2).

2. We show that 4 can be chosen so that it is continuous. We may assume that « passes through the critical
points (of f), v(t1),...,v(tn) in that order. Thus, we divide the path «y into the sub-paths y(0) — v(t1),
v(t1) — 7(t2), ..., that do not contain critical points in the intervals (0,¢1), (t1,%2),..., (tn,1). To
construct 4 in each interval [t;,;11], we choose a point x; € 71 (y((t; + t;41)/2)) C S%. Then 4 in
(ti, (t; +ti+1)/2) is defined as the path solving

y=Vfy), y0) =z c$?
and in ((tl + ti+1)/27ti+1) as
y=-Vfly), y0)=uaz¢c8
clearly, these paths are continuous and we therefore have that 4 is continuous, and 7 (%) = 7.
Now that we have a continuous loop 4 : [0,1] — S? we may contract 4 to a point via a retraction,
F :[0,1] x [0,1] — S?, such that F(0,t) = 4(¢) and F(1,t) = v(0). Then 7o F is a retraction of v to v(0),
which is impossible unless v = v(0), in which case we did not have a loop. A retraction of a loop (one-to-one
path with endpoints the same) in Reeb(f) is impossible. O

3.3 Attributed Reeb Trees (ART)

We now introduce the definition of Attributed Reeb Trees (ART), which we will show in the next section
is the maximal invariant to viewpoint/contrast. To introduce the definition of ART, we must start with a
series of intermediate definitions.

Definition 8 (Attributed Graph). Let G = (V, E) be a graph (V is the vertex set and E is the edge set),
and L be a set (called the label set). Let a : V — L be a function (called the attribute function). We define
the attributed graph as AG = (V,E,L,a).

Definition 9 (Attributed Reeb Tree of a Function). Let f € F. Let V be the set of critical points of f.
Define E to be

E = {(vi,v;) 1 i # j, 3 a continuous map ~ : [0,1] — Reeb(f) such that
Y(0) = [(vi, £(va)], (1) = [(vj, f(v)))] and 7(t) # [(v, f(v))] for allv € V and all t € (0,1)}. (9)

Let L =R™*, and
a(v) = f(v)

Note that the south pole vs, € S?, is a critical point, and we include that in our definition. We define

ART(f) .= (V,E,L,a,vsp).
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Figure 2: The lip region of Fig. [l} its level lines, the level lines marked with extrema, and a graphical
depiction of the ART (note that the height of the vertex is proportional to the attribute value).

Note that the above definition encodes the type of critical point of each vertex v € V:

Definition 10 (Index of a Vertex of an Attributed Tree). Let T' = (V, E,R* a) be an attributed tree, we
define the map ind : V — {0,1,2} as follows:

1. ind(v) = 2 if a(v) < a(v') for any v’ such that (v,v") € E
2. ind(v) =0 if a(v) > a(v') for any v' such that (v,v') € B
3. ind(v) = 1 if the above two conditions are not satisfied.

Definition 11 (Equivalence of Attributed Trees). Let Ty = (Vi, E1,RY, a1,v4p.1) and To = (Va, E2, RT as, v 2)
be attributed trees. Then we say that Ty is equivalent to Ty denoted Ty = Ty if the trees (Vi, Ey) and (Va, Es)
are isomorphic via a graph isomorphism, ¢ : Vi — Vi, and the following properties are satisfied:

o if a1 (v) > a1 (v') then az(¢p(v)) > az(d(v)) for all v,v" € Vi

o H(vsp1) = Vsp 2.

Definition 12 (Degree of a Vertex). Let G = (V, E) be a graph, and v € V, then the degree of a verter,
deg(v), is the number of edges that contain v.

Definition 13 (7, a Collection of Attributed Trees). Let T’ denote the subset of attributed trees (V, E,R*, a,vs,)
satisfying the following properties:

1. (V,E) is a tree
2. If v eV and ind(v) # 1 then deg(v) =1
3. If v eV and ind(v) =1, then deg(v) =3
4. ng —ny + ng = 2 where ng, ny and no are the number of vertices of index 0, 1, and 2.
We define T to be the set T' under the equivalence defined in Definition[11]
Fig. [2| shows an example of constructing an ART from an image (in this case the lip part of the image in

Fig. [I). We will show in the next section that ART(F) =T.

3.4 ART is the Maximal Viewpoint/Contrast Invariant

In this section, we show that §” = T. Clearly ART(f) is invariant with respect to domain diffeomorphisms
and contrast changes, i.e. ho f ow, since the latter do not change the topology of the level curves. However,
it is less immediate to see that the Attributed Reeb tree is a sufficient statistic, or that it is equivalent to
the surface that generated it up to a domain diffeomorphism and contrast transformation.

We start by stating a fact from Morse theory [14] that we exploit in our argument:

10
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Figure 3: The Morse Lemma states that in a neighborhood of a critical point of a Morse function, the level
sets are topologically equivalent to one of the three forms (left to right: maximum, minimum, and saddle
critical point neighborhoods).

Lemma 3 (Morse Lemma). If f : S? — R is a Morse function, then for each critical point p; of f, there is
a neighborhood U; of p; and a chart v; : U; C R? — U; C S? so that

—(2%+9°) if p; is a mazimum point
f(&,9) = f(pi) + 1 22+ 92 if pi is a minimum point
if p; 1s a saddle point
where (2,7) = ;(z,y) and (z,y) € S? are the natural arguments of f.
Figure [3| shows the three canonical forms stated in the previous lemma.
Lemma 4 (Degree of Vertices in ART). Let f € F, and ART(f) = (V,E, L,a,vsp), then
1. if v €V and ind(v) # 1, then deg(v) =1
2. ifv eV andind(v) =1, then deg(v) = 3.

Proof. The first assertion (the case when v is a maximum or minimum) follows directly from the Morse
Lemma. The second may be proved using the two relations

np,2 — N1 = 2 and ng,2 +nyp — |E| =1 (10)

where ng 2 denotes the number of vertices of degree 0 or 2, ny is the number of vertices of degree 1, and |E|
is the number of edges. The first is relation is a fact from Morse Theory [14], and the second is simply the
relation for trees that |V| — |E| = 1. Noting that for any graph,

> deg(v) =2|E| or nga+ Y deg(v) =2|E|, (11)

veV veV,ind(v)=1

and combining with , we find that

Z deg(v) = 3nq, (12)

veV,ind(v)=1

but according to the Morse Lemma and the fact that critical points have distinct values (by definition of F),
deg(v) > 2 if ind(v) = 1. These facts and mean that deg(v) = 3 if ind(v) = 1. O

11
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Figure 4: The possible connected components of a level set of a function. Left to right: a regular point’s
level set, a minimum or maximum point, a Type 1 saddle point, and a Type 2 saddle point level set. Note
that the last two are indistinguishable on the sphere, but not on the plane (as in the case of interest).

Figure 5: Level sets in a thickening of a Type 1 saddle connected component, 7 f ([x, f(x)]). The plus/minus
indicates that the level sets are above/below the value of the saddle point. An example of thlb type of saddle
point arises from a pair of shorts.

Lemma 5 (Global Topology of Connected Level Sets). Let f € F, and ny : R? — Reeb(f) be the natural
quotient map. Then 71';1([.73, f(x)]) for each x € R? is topologically the same as one of the following:

Proof. There are three cases: either z € R? is a critical point (saddle or min/max) or a regular point.
Note that because we are working with the class F of functions, W;l([l', f(z)]) is compact, and not other

critical point may have the value f(x). By the Morse Lemma, if x is a regular point, then 71';1([.%, f(@)]) is
topologically a circle, and if x is a min/max, then 7r171( [, f(x)]) is a point. The only case that remains is
the saddle. For z a saddle 7r]71([:1:, f(@)]) is compact and must cross at an ’X’, there are only two possible

topologies for w}l([x, f(x)]), and they are the latter two cases. O

By the previous Lemma and the Morse Lemma, it is easy to see that in thickening around W;l([iﬂ, f(@)])
(z a saddle), the level sets are topologically equivalent to the cases in Fig. [5for Type 1 saddles, and in Fig. |§|
for Type 2 saddles.

&)

Figure 6: Level sets in a thickening of a Type 2 saddle connected component, W;l([l‘, f(z)]). The plus/minus
indicates that the level sets are above/below the value of the saddle point. An example of this type of saddle
arises from a hill with a pit on the side.
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Lemma 6. Let f1, fo € F and ART(f1) = ART(f2). Let ¢ be a graph isomorphism between the trees in
ART(f1) and ART(f>) satisfying Def.[11l If v € Vi and v’ € Va where v is a Type 1 saddle and v’ is a Type
2 saddle, then ¢(v) # v'.

Proof. We proceed by induction on n, the number of saddles of f; (or f2). If n = 1, then the Attributed
Reeb Trees must have one of the forms in Fig. [7} Note that v, is the south pole vertex (of S?), which is

Vsp Vsp
Vsp Vsp

Figure 7: If n = 1, then the ART(f) must be equivalent to the Type 1 saddles (left) or the Type 2 saddles
(right), and the two types are not equivalent since vy, must be preserved under ¢.

equivalent to the point at infinity in R2. Because vsp must be preserved by ¢ (that is, the points at infinity
in the domains of f; and fo must be mapped to each other), a Type 1 saddle (on the left in Fig. @ may not
be mapped to a Type 2 saddle (on the right in Fig. [7]).

Next assume that for all f1, f} that have n — 1 saddles, we have that ¢'(v) # v’ where v € V} and v € V5
are different saddle types for any valid graph isomorphism ¢’. Now let fi, fo have n saddles. Choose a
saddle point vs of f; that is adjacent to two vertices that are not saddle points, and let v, = ¢(vs). We
claim that vs and v} are saddles of the same type. Indeed, the Attributed Reeb trees around the vy and v/,
are in Figure [§ where the label S denotes a vertex that is a saddle point and the others denote maxima

YA

Figure 8: Attributed Reeb trees of Type 1 (left) and Type 2 (right) saddles which are adjacent to two vertices
that are not saddles.

or minima. Clearly, ¢ may not map vs to v’ if they are of different types. Now we reduce ART(f1) and
ART(f2) to have trees with n — 1 saddles by removing the maxima/minima adjacent to vs and v, (and their
edges). Note that vs; and v/ now become a maximum or minimum. The resulting attributed trees have n —1
saddles and result from functions fi and fJ that are obtained by coarsening f1 and f near v, and v/, (note
that we may also apply Lemma (8] to obtain f{ and fJ). Now the restriction of ¢ to ART(f]) and ART(f})
is a valid equivalence. But by the inductive hypothesis, ¢ does not map different types of saddles to each
other. O

We now move to the core part of our argument:

Lemma 7. Let f1, fo € F be functions that generate two surfaces. Then
ART(f1) 2 ART(f2) & F heH,weW such that f; = ho fyow. (13)

Note that the diffeomorphism w and contrast function h are not necessarily unique.
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Figure 9: Tlustration of Steps 2, 3, and 4, respectively, of the proof of Lemma [7] This figure is the proof of
Lemma [7] in pictures: it details the construction of the domain diffeomorphism w such that f; = ho faow
where h is a contrast change and ART(f;) = ART(f2). The Morse Lemma (Lemma [3) guarantees the
existence of a diffeomorphism w; that maps a neighborhood, U; of critical point p; of f; to a neighborhood
U; of a corresponding critical point p; of fo and satisfying the desired conditions (left most image). The
map w; can then be extended to a map w; defined on W;, the level sets of f; that intersect U;, and range
W;, the level sets of fo that intersect U; (middle image). This is done by mapping the level set of f; that
contains z € U; to the level set of fo that contains w;(z) € Ui. Finally, the map is extended to the region
X,; between adjacent critical points p;, p; on ART(f1) and range in the region, )N(ij, between corresponding
adjacent critical points p;, p; (right image). Such regions are diffeomorphic to a disc with a hole in the
center, and therefore there is a diffeomorphism between X;; and Xij that extends w; and ;. Note that by
Lemma [6] Type 1 and 2 saddles are preserved under the map w, and thus similar pictures would follow for
Type 2 saddles.

Proof. Let ART(f1) = (V1, E1,RT,a1) and ART(f2) = (Va, B2, RT, as). We construct w to be a C* diffeo-
morphism, but similar reasoning can be used to obtain a C? diffeomorphism. We prove the forward direction
in steps (the steps are pictorially shown in Fig. E[):

1. We may associate critical points p; of fi to corresponding critical points p; of fy via the graph isomor-
phism ¢ : Vi — V5.

2. Using the Morse Lemma, there exist neighborhoods Uj, U; ¢ S$? and diffeomorphisms w; : U; — U;
where p; € U; is a critical point of f; and p; € U; is the corresponding critical point of f; such that

fl‘Uz = ]’Ll e} f2 e} wl|Ul

for the contrast change h; : fo(U;) — f1(Us), hi(z) = fi(pi) — f2(;) + 2. We may assume that {U;}
are disjoint as are {U;}. We may also assume that f(U;) N f1(U;) = 0 and fo(U;) N f2(U;) = O for
i # j since critical values are assumed to be distinct (by definition of F). Note that w; = z/;; Loy,
where ¢; and 1/?1 given from applying the Morse Lemma to f; and f; around the critical points p; and
Di, respectively.

3. Let m; : S — Reeb(f1) and 7y : S> — Reeb(f2) be the natural quotient maps. For each p; and j;, that
correspond to minima or maxima (i.e., ind(p;) = ind(p;) # 1), we may choose W; C U; and W; C U;
that are open such that d(W;) = 71 2([q, f1(9)]), d(W:) = 75 L ([wi(q), fa(w;(q))]) for some ¢ € U;, and
wl(WZ) = Wz We define ’lDi = wi\Wi.

Now we consider each p; that is a saddle point (i.e., ind(p;) = 1). By choosing an appropriate subset
of U; and U; (which for simplicity are denoted by U; and U;), we may assume that 71 *([g, f1(q)]) N U;
and 75 ' ([w;(q), f2(w;(q))]) NU; each have at most two connected components for ¢ € U;. For example,
we can choose U; = b, ' (B.(0)) and U; = ;' (B.(0)) for € < 0 small and B denotes the disc in R2.

14



We now extend each w; : U; — Ul to w; : W; — VNVz where
wi= U m'e @)
q€U;\{p:}

Vi U =g f2(0)

q€UN\{p:}

=
[

We define w; as follows:

e Note that each 77 ([g, f1(q)]) (¢ € U;\{p:}) and 75 *([w;(q), f2(wi(q))]) are both diffeomorphic to
the circle (since ¢ is not a critical point), and therefore diffeomorphic to themselves.

e Let us consider the case when 77 *([g, f1(q)])NU; consists of two connected components (the case of
one connected component is done similarly). Let A, B, C, D denote points of d(7 *([q, f1(q)])NT;)
and let A" = w;(A), B’ = w;(B),C" = w;(C), D" = w;(D). We assume that A - B - C — D —
A traverses 77 *([g, f1(q)]). Assume A — B and C — D specifies the parts of ;' ([g, f1(q)])
where w; is defined. Let c1, co : [0,1] — R? be parameterized by arc-length parameter (and whose
orientation is consistent with the orientation of A - B — C — D and A’ - B’ - C' — D') of
77 (g, f1(q)]) and 75 *([w;(q), fa(w;i(q))]). We define ¢ : [0,1] — [0,1] to be such that

— ¢(0) =0,(1) =1 and ¢'(0) = ¢'(1)

Define ¢(€) so that Z = ¢1(§) and =’ = ea(p(€)) for € =0,b,¢,d,1, E= A, B,C, D, A, resp.
— Define ¢’(€) so that Vw;(c1(§)) - €1 (&) = ch(p(£))¢’'(§) where £ = 0,b,¢,d, 1.

— Naturally, we may define ¢ in the intervals [0, b] and [c, d] as satisfying w;(c1(§)) = c2((£)).
We define

o(x) = o(b) + / "g(©)de, forx e (bo)

where g : [b,c] — RT satisfies

and is continuous with respect to b, c, ¢'(b), ¢’(c) and x. We may similarly define ¢4 ;.
Next we define w; by setting
wi(c1(§)) = ea(p(8))-
e Note that w; : W; — WZ is a diffeomorphism because
— w;|U; = w; is a diffeomorphism by the previous step

— By Lemma [} w; does not map a type 1 saddle to a type 2 saddle and vice-versa, and so
w; |(W;\U;) will be a diffeomorphism, details of which follow.

— w;|(W;\U;) is a diffeomorphism: for the region
{wfl([q, f1(@)]) : ¢ € Ui\{pi}, Wfl([q, f1(q@)]) NU; has 2 connected components}

and (each connected component of) the region

{71'1_1([(], f1(@)) : ¢ € U\{pi}, Wfl([q, f1(¢)]) NU; has 1 connected component}

the parameterization of these regions by the family of ¢; and ¢y are differentiable, and so is
the family of ¢. Therefore, w; is a differentiable as is its inverse.

— Dw;|0U; = Dw;|0(W;\U;): this is by construction of ¢ in the previous step to be differen-
tiable, and differentiable in its boundary conditions.
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4. Finally, we extend the diffeomorphisms ; to form a diffeomorphism w : S> — S2. Define w on the
neighborhoods W; so that w|W; = ;. In the following, we define w in the region S?\ U; W;.

Let p; and p; be critical points of f; with corresponding vertices v;, v; € Vi such that (v;,v;) € Eq; also

let p;, p; be the corresponding critical points of fy and v}, v} € Va (with (v}, v}) € F2) corresponding

vertices. Let ;5 : [0,1] — Reeb(f1) be a continuous path such that v;;(0) = [(ps, f1(p:))] and 7;;(1) =
[(pj, fi(p;))]. Similarly, let 7;; : [0, 1] — Reeb(f2) be a continuous path such that ;;(0) = [(;, f2(P:))]
and 7;5(1) = [(B;, f2(p;))]- We define

X5 =1 (i ([0, 1)\(W; U W)

Xij = m5 (3 ([0, 1))\ (Wi U W).
Note that X;; and Xij are both diffeomorphic to an annular region in R?. Therefore, 0X;5 = Oin X4 U
OoutXij where 0;, X;; denotes the inner boundary of X;; and 0,,+X;; denotes the outer boundary.

We define w;;, wsj : Xij — Xij as follows:
e We define (;; : 9;X;; x RT — S? and @j : &-nXij x Rt — S? as

0Gij(z,t) = £V f1(Gij (2, 1)), Cij(2,0) = 2 € 0in Xij
atcij(x7t) = inQ(Cz](xvt))7 Cij(xa 0) =T c 8inXij
where we use the positive gradient direction if f1(9inXi;) < f1(9outXij) otherwise negative. Note

that ¢;;(0inXij, t) (@j(amf(ij, t)) is a level set of f1 (f2) for each ¢ since 05, X, (8in)~(ij) is a level
set, Of f1 (fg) AISO in ﬁnite time, T (T), Q](ainX”,T) = &mtXij (Clj (aanU7T) = &,utf(ij).

e Note that Cij (81'”Xij, [O,T]) = Xij and éij (o”'mf(ij, [O,T]) = X” We define Wiy * Xij — X,‘j as

~ Gj(wi(x), hij(t) € cl(W;) o
w;j(Gj(x, 1)) = {Eij(wj(ﬂf), hi(t) @€ A(W)) , for x € 0;, X5, t € 0,T). (14)

where hy; : [0, T] — [0,T] is chosen to be smooth, satisfies the conditions
hij(0) =0, hij(T) =T, hi;(0) = Bj(f2 0 wi(9nXij)), hiy(T) = h(f2 0 w;(Oout Xij)),
and is such that h : fo(S?) — f1(S?) with the conditions

h(f1(0inXij)) = f2(0inXi5), B (f1(9nXi5)) = hi;(0)

h(f1(Oour Xi5)) = fo(Oour Xiz), B (f1(0inXi5)) = iy (T)
h(v) = hi(v) for v € fo(U;)
is smooth. Note that h is the contrast change that we have been seeking in .

o It is clear that w;; : Xj; — Xl-j is a diffeomorphism; however it may not be the case that

Dw;|0W;(xz) x € OW;

. 15
ij\ﬁWj(:z:) .%‘E&Wj ( )

Indeed by Step 3, recall that we have

fi(x) = h;o fo ow;(z) for x € U;

10Note that a simple curve in S? does not define an inside and outside; however, we are identifying S? with R? by specifying
that the south pole of S? is mapped to infinity.

16



and so by differentiating, we have
Vfi(x) = hi(f2 o wi(z)) Dwi(x) - V f2(wi(z)),

or

Dw;(z) - V fi(x) = hi(f2 0 wi(x)) Dw;(z) Dw] (2)V fa(w;(x)). (16)
Next by differentiating , we have that
Duwij - 9yGij(a,t) = 9pGij(wi(x), hij (£)) i (t)
that is N
Dwij - V f1(Gij(, 1)) = hi;(0)V fa(Cij(wi(x), hij(t))).
In order to “adjust” w;; so that holds, we define a new map ;; as follows. Let us abuse the
notation and let 9;, X, 9inXij : S* — R? denote smooth parameterizations of the corresponding
sets so that w; (9, Xij(u)) = 9in Xy (u) for all u € S'. Define ¢1,¢2 : ST x [0,1] — R? as
c1(u,v) = ((0inXij(u),vT)
CQ(’U7 ’U) = f(amf(m (u), h(’UT))
Observe that w;;(c1(u,v)) = c2(u.v) for all (u,v) € S! x [0,1]. We now define ¢ : S x [0,1] — S!
so that the map w;; : X;; — Xj; defined by
UA)ij(cl (’U/,’U)) = CQ(L,O(U, U),’U) (17)

satisfies . Computing derivatives of we have

0 .
5 i (e1(u; ) = duca(@(u, v), v)po (4, v) + duea(p(u, v),v).
Note that by definition of ¢y

ucz((u, v),v) = A(u, v)(V fa(ea(p(u,v),v)))*

L means counterclockwise rotation by 7/2, and A is a scalar-valued function. Next, we

where
have that

81162(90(“7 U), 'U) = B(ua 'U)VfQ (CQ (SD(UW U)v ’U))
for a scalar-valued function B. Now for v € {0,1} we must have that ¢ satisfies the conditions
o(u,0) = u, p(u,1) =u
1

A, 0)(V faea(ip(u,v), 0))) - @u(,0) + Blu, 0) V fa(ea(ip(u,v),v)) = = Dwilea(u,v) - V filea (u,v)

where Dw;(cy(u,v))-V fi(c1(u,v)) is specified in (T6]). In other words, we must choose ¢ to satisfy
the boundary conditions

@(U?O) =u, @(ua 1) =u
SDU(’UﬁO) = E(u)v Spv(uv 1) = F(u)

where E, F : S* — R* are specified. Note that in the interior of S! x [0, 1], we need the mono-
tonicity condition that
py > 0.

We may specify ¢ in the interior of S' x [0, 1] to, for example, satisfy:

Puvuu T Poovy = 0.
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Figure 10: This figure shows the importance of the structure of the ART in determining whether two functions
are in the same equivalence class. The figure shows the level sets of two functions and their corresponding
Reeb trees. In this case, each function has the same number of min/max/saddles, and values, but the ARTSs
are different and the functions are not equivalent via a viewpoint/contrast change.

Now w|X;; = w;; and w|W; = w; specifies a diffeomorphism w : S? — §2.
O

Remark 12. Note that there is no subset (in general) of the attributed Reeb tree that is sufficient to determine
the domain diffeomorphism w. In other words the vertices, their values and their indices are not a sufficient
statistic to determine a domain diffeomorphism, w. To see this, we give an example of two attributed Reeb
trees that have the same number and types of critical points and values, but are not equivalent (see Figure @)

Remark 13. Condition 2 in Deﬁnition@ ensures that ART(f) does not change under small perturbations
of f, e.g., [+ eg for small . This property is important in image analysis since the presence of noise in
images is common, and thus, we are interested in a class of functions that are stable under small amounts
of nmoise.

To demonstrate this point, consider the following function with two saddle points that have the same
function value and belong to the same connected component of a level set:

f(x,y) = exp [—(2® + )] +exp [=((x = 3)* + %)) + exp [~ ((z +3)* +v*) ;

the function and its attributed Reeb tree is plotted in the top of Figure[1l. Now consider a slightly perturbed
version of f:

9(z,y) = exp [—(2® + y*)] + exp [~ (1 +2¢)((z — 3)* + ¢*)] +exp [-(1 + €)((z + 3)* + »?)],

where € > 0; the function is plotted in the bottom of Figure[I1l Although f only differs from g by a slight
perturbation, the attributed Reeb trees are not equivalent. Indeed f is not a stable function under small
perturbations, while the function g is stable.

Further, Condition 2 simplifies our classification of the equivalence of functions under contrast and view-
point changes. Indeed, the attributed Reeb tree may not contain enough information to determine a domain
diffeomorphism w between two functions with same Reeb tree in the case of multiple saddles belonging to the
same connected component of a level set. In such a case, multiple saddle points of a function coalesce to a
single point in the ART. The graph isomorphism ¢ in the proof of Lemma[7 may not be enough to determine
the correspondence between saddles of fi and those of fa in this case since ¢ only associates the group of
coalesced saddles of f1 to the group of coalesced saddles of fs.
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Figure 11: Top: A Morse function (its level sets, surface, and attributed Reeb tree, respectively) of a function
with multiple saddles on the same connected component of a level set. Bottom: a slightly perturbed version
of the above Morse function. The attributed Reeb tree of the function on the top is not stable under small
perturbations; while the one on the bottom is stable.

Lemma 8. For each T € T, there exists a Morse function f € F so that ART(f) =1T.

Proof. Let T’ € T’ be any representative of T. We apply the following algorithm to construct the level sets of
f in R? so that ART(f) = T. The algorithm recursively traverses the tree T' starting from v, constructing
the level sets of f out from infinity in R? (equivalently, the south-pole of S?) inward.

o Let R={z € R? : || < 1}. We define f on R?\R so that the level sets of f inside the region R are
Ls={zx € R? : |z| = §} for each § > 1.

e Set v to be the vertex adjacent to vsp.
e SubAlgorithm(v,R)

— If there are no vertices adjacent to v that have not been visited, then v corresponds to a minimum
or maximum of a function with ART 7. We define f in R is defined to be diffeomorphically
equivalent to g : B1(0) — R (B1(0) is the ball of radius 1 centered at 0) g(x) = (2% +23) (+ if v
corresponds to a minimum, and — if v corresponds to a maximum) and consistent with f already
constructed on JR.

— Otherwise, let v1, vy be the two vertices adjacent to v that have not been visited.

x Let R’ C R such that cl(R’) C R and let R’ be a 2-fold connected closed set (i.e., a region
with two holes).

« If a(vy),a(ve) > a(v) or a(v) > a(vi),a(ve) then v must correspond to a Type 1 saddle
point E Define f on R’ to be diffeomorphically equivalent to a function that has level sets
illustrated in the left of (in case a(v) > a(v1),a(ve)) or in the right of Figure [5| (in case
a(v) > a(vy), a(va)).

« If a(v1) > a(v) > a(vz) or a(vy) < a(v) < a(vz), then v must be a Type 2 saddle point.
Let vprew be the vertex that was previously visited. Define f on R’ to be diffeomorphically
equivalent to a function that has level sets illustrated in the left of (in case a(vpres) < a(v))
or in the right of Figure [§] (in case a(vpres) > a(v)).

HDistinguishing between Type 1 and Type 2 saddles is based on the order of the traversal of the tree, T, i.e., the order
of vertices visited before and after saddle vertices. Note that the algorithm constructs the function f from outward regions
inwards. Thus, level sets of a function corresponding to the interior of the edge (vprev,v) (where vpres is the vertex visited
prior to v) enclose the domain of the function corresponding the portion of the tree containing vertices v1,v2,v. By looking at
Figs. [B] [6] Type 1 saddles are such that v1,v2 have attributes that are either both less or greater than v, otherwise they are
Type 2 saddles.
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* The region, R” = R\cc(R') (where cc(R') indicates the intersection of all simply connected
regions containing R’) is diffeomorphic to an annulus. The function f in R” is constructed
so that it is diffeomorphic to g : B2(0)\B1(0) — R* defined by g(z1,x2) = +(2% + 23) (+ if
a(v) < a(Vprev), — otherwise) and maintaining any boundary conditions in R’ imposed by
the previous steps of the algorithm. This is guaranteed by the Collar Theorem of differential
topology (see [14]).

* Repeat SubAlgorithm(v;,R;), SubAlgorithm(wvse,R2) where Ry and R, are the two con-
nected components of cc(R')\R.

e The values of the level sets are chosen so as to be consistent with the attributes of the ART.

Collecting all these results together, we have the following result.

Theorem 3. The attributed Reeb tree of a surface uniquely determines it up to a contrast change and domain
diffeomorphism. Equivalently, the orbit space of surfaces that are graphs of Morse functions, F, under the
action of contrast and domain diffeomorphisms, H x W, is

S'=T (18)
Proof. We can define the mapping ART : S/(H x W) — T by
ART([f]) := ART(f), where [f] = {ho fow e F: (h,w) € H x W}

The function above is well-defined since any representative g € [f] will have the same Attributed Reeb Tree.
Note

e Lemma [7|states that ART : S/(H x W) — T is injective.
e Lemma [8 states that ART : S/(H x W) — T is surjective.
e Therefore, ART : §/(H x W) — T is a bijection and therefore, S/(H x W) = T.
O

Remark 14. The results above do not cover the case of surfaces that are not graphs of Morse functions.
In the context of image analysis we always deal with surfaces that are graphs (the intensity values), but in
general they are neither smooth nor have isolated extrema. Lack of smoothness is caused by discontinuities
for instance due to occlusions and material boundaries. Therefore, the analysis above applies only to a
segment (a sub-set) of the image domain, which can be mapped without loss of generality to the unit square.
Non-isolated extrema such as ridges and valleys are also commonplace in images, but they are accidental in
the sense that a ridge with constant height can be turned into a Morse function by slightly perturbing it, thus
generating a maximum along the ridge. The ART is stable with respect to such perturbations, although one
could question the loss of discriminative power of the representation of ridges as “thin blobs” that renders
them indistinguishable from other blobs, regardless of their shape.

4 Structural Stability to Non-Invertible Nuisances

Definition 14 (Structural Stability to Scale). 1. An image I : Q — RT is structurally stable to scale og
if ART(I xG,) = ART(I) for all 0 < 09.

2. An image I : Q — RT is structurally stable at scale o to scale g if G, * I is the smallest o for which
structurally stable to scale oy.
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5 Conclusion

In this manuscript we have focused on analyzing portions of the image that exhibit smooth shading or
smooth texture variations. Such regions of the image would be discarded by most feature selectors used
in the recognition literature as they contain no discontinuities (edges or corners). They would also be
“misinterpreted” by any segmentation algorithm, as the smooth gradient would generate spurious boundaries
that are unstable with respect to perturbations of the image [7]. And yet, smoothly shaded regions convey
“information” that can be useful for recognition. We have shown that

e It is possible to compute functions of an image region that exhibits smooth variation that are invariant
to both viewpoint and a coarse illumination model (contrast transformations), called ARTSs.

e Such functions are sufficient for recognition of objects and scenes under changes of viewpoint and
illumination, in the sense that they are equivalent to the image up to an arbitrary change of viewpoint
(domain diffeomorphism) and contrast transformation (a first-order approximation of illumination
changes).

e Such functions have support on a set of measure zero of the image domain.

These results do not cover the case of image surfaces that are not graphs of Morse functions. These include
discontinuities and ridges/valleys. Therefore, the analysis above applies only to a segment (a subset) of the
image domain, which can be mapped without loss of generality to the unit square. Non-isolated extrema
such as ridges and valleys are also commonplace in images; they can be turned into a Morse function by an
infinitesimal perturbation. One could question the loss of discriminative power of the representation of ridges
as “thin blobs” that renders them indistinguishable from other blobs, regardless of their shape. Contrast
transformations are only a coarse model of the complex effects that illumination changes induce in an image.
Devising illumination models that are phenomenologically consistent and yet amenable to analysis is an open
research topic in computer vision.

Appendix

A Epipolar diffeomorphisms

In this section we derive Equation from .
If we call Ry =[1 0 0]R, Rz = [0 1 0]R, and similarly Rs,Ti,Ts,T5, we have, writing explicitly

{ g: ]xZ(m)+ [ % ]
RyzZ(x)+Ts

This equation specifies the class of allowable domain diffeomorphisms under changes of viewpoint away from
occlusions, when the scene is rigid and Lambertian, z — w(x|R,T, Z(-)). Thus, once the (positive, scalar-
valued) function Z(-), the matrix R € GL(3) and the vector T' € R? are determined, so is the diffeomorphism
w.

To make more explicit the dependency between w, and w,, we can imagine choosing w, arbitrarily, which
in turn determines

’wm(l')Tg — T1
7 =
(iL’) Rz — wg;(.’L‘)Rgi‘,

and after substituting and simplifying, this uniquely determines ws(x) as a function of R and T

RoxTs3 — R3xTs R1ZTy — RoxT}
2\ L — — — — .
R1IT3 - R3IT1 RlITg - R3SCT1

wy(z) =w (20)
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So, of all diffeomorphisms w : R? — R2, we can consider the class implicitly defined by the constraint
<’LZI($), [jo?Tg — R3xT5, —(R1§3T3 — R3§3T1), RizT5 — Rg.le]T> =0. (21)

Equivalently, the diffeomorphism w, written in homogeneous coordinates w(z) = [wi(x), wa(x), 1] has to
be orthogonal, for all © € R?, to the function

RoxTs3 — R3xTs N
wh(z) = | —(R1ZT3 — RszT)) | = TRE (22)
RizT5 — RoxTh

where the reader will recognize the latter expression from epipolar geometry [I2]. The set of allowable
diffeomorphisms, under no occlusions, Lambertian reflection and rigidity, is therefore

W = {w: R? - R? |(w(z), TRE) = 0, for some (R,T) € A(3)}. (23)

which is .

Proof of Theorem (1]

Proof. Assume w3 € W, and therefore there exist R3, T3, Z3 such that ws = w(x|R3, T3, Z3). Now consider

Z3(7(R1%Z1(x)+T1)) Za(2)
§3~(R11;EZII(3;)+T11) + RoyT4 2

w1 0wy, which can be written as 7(ReR1ZZ; () ) +T3), where it can

es-(R1zZ1(2)+1h
be seen that it is not possible to choose a constant T5 unless m =1 for all x, which imposes a

non-generic condition on Z; and Zs, hence the contradiction. O

Proof of Theorem [2]

Proof. We note that orientation preserving diffeomorphisms of the plane can be generated by integrating
time-varying vector fields:

w(t, ) =v(t,w(t,z)) tel0,1], € R?
w(0,z) =z r € R?

where v, w : [0,1] x R? — R?, and w(1,-) is the generated diffeomorphism. If wq ¢ wo; € W is a family of
diffeomorphisms, then

oLt O W = (Opwy 1) o way + (Dwy g o way) - Opway = v14 0 Way + (Dwyy o way) - vay.

Therefore from the previous expression, it is apparent that if the linear span of the vector fields generated
by w € W is all possible smooth vector fields, then the closure of W is the set of orientation preserving
diffeomorphisms.

Let w(-|g¢, Z) be a family of diffeomorphisms where ¢ — ¢, is such that g, € SE(3) corresponds to a path
of viewpoint changes and Z is a fixed surface. We show that

span ({;w('|gt, Z) : gi € SE(3), Z satisfies the condition in }) (24)

is the set of smooth vector fields. Indeed,

gw(| Z) _ (8th53Z(x) + 8tTt)(R37t . fZ(a:) + T37t) + (Rtﬂj‘Z(]}) + Tt)(atR&t . i‘Z(l’) + 8tT37t)
ar V19 (R3,; - TZ(x) + T3)? ’

where g = ((R¢, Rs.t), (Tt, T3.¢)), and that may be expressed in the form

1

= 2 72 b b b3)Z
veo 1 Z(x) + doxoZ(x) + d3 (@127 + @212 + 0323) 2%(2) + (i +baa + b3) 2 (@) + 1]

0
aw(xhxﬂgtv Z)
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where = (21, 72), d; € R and a;, b;, ¢; € R%. By choosing g;(0) and 0g;(0) appropriately, we may obtain
arbitrary coefficients. Therefore, it is apparent that the span in contains both the sets

{( gl(“’“) ) 7 :R2—>R} and {( %2(%3:2) ) :Z2:R2—>R},

which establishes our claim that is the set of smooth vector fields.
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