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Abstract— We propose a dynamical model-based approach
for tracking the shape and deformation of highly deforming ob-
jects from time-varying imagery. Previous works have assumed
that the object deformation is smooth, which is realistic for the
tracking problem, but most have restricted the deformation to
belong to a finite-dimensional group, such as affine motions,
or to finitely-parameterized models. This, however, limits the
accuracy of the tracking scheme. We exploit the smoothness
assumption implicit in previous work, but we lift the restriction
to finite-dimensional motions/deformations. To do so, we derive
analytical tools to define a dynamical model on the (infinite-
dimensional) space of curves. To demonstrate the application of
these ideas to object tracking, we construct a simple dynamical
model on shapes, which is a first-order approximation to any
dynamical system. We then derive an associated nonlinear filter
that estimates and predicts the shape and deformation of a
object from image measurements.

I. INTRODUCTION

Our goal in this paper is to track highly deforming

objects from time-varying two-dimensional images. We are

interested in tracking the precise shape of the deforming

object by predicting and extrapolating its deformation. The

class of objects we focus on can be described by non-

self-intersecting closed planar curves, as customary in the

literature of active contours [12], although most of that

literature focused on static imagery. Extensions to temporal

data typically involves two steps. One is the collection of

local statistics from a single image (e.g. intensity histograms,

spatial and temporal regularized derivatives etc.). There is a

vast literature on image domain partitioning based on such

local statistics using a variety of criteria and their associated

energy functionals, from intensity-based segmentation [3],

[17], [4] to piecewise parametric optical flow estimation [7],

[20]. The other step is incorporating a model of the temporal

variation of the deforming object into the tracking algorithm.

The simplest way to extend the active contour methodology

to time-varying imagery is to use the contour estimated at

time “t” as initialization for the same gradient-based opti-

mization at time “t+1” [4]. This approach implicitly assumes

trivial dynamics (“constant position plus perturbation”), so its

prediction would trail an object moving with constant speed

with a constant error. Better dynamics (“constant velocity

plus perturbation”) have been developed both for parametric

[2], [24], [10] and geometric [21], [18], [11] active contour

models, the latter implemented using level set methods [19].

While these methods can more accurately predict the (affine)

motion of the object, their deformation model remains trivial

(no deformation on average): So, the prediction of the motion

of a jelly fish would extrapolate its affine trajectory (position,

orientation, scale and skew) but “freeze” its shape to the last

observation. Thus the dynamical model – and therefore the

predictive ability of the tracking scheme – is restricted to the

finite-dimensional portion of the actual object deformation.

Recent work has moved beyond the assumption of affine

motion [6], [25]. In [6], the motion/deformation is described

by a linear autoregressive model defined on combinations of

distance functions given as a training set. The applicability

of this method is therefore restricted by the availability of

training data for every particular object class and its asso-

ciated deformations. In [25], the authors use a small time-

varying basis, which is finite-dimensional but beyond affine,

to dynamically model local deformations of the contour.

In this paper, we define a dynamical model directly on the

infinite-dimensional space of (closed, simple, planar) curves

to model the deformation of the object of interest. The study

of shapes as points on an infinite dimensional space has been

the subject of considerable interest recently [5], [16], [1], [8],

[28]. In the present work, we construct a Riemannian struc-

ture on the space of curves using a geometric-type Sobolev

metric [27], [15], [23]. This is useful for tracking because

it favors smooth motions of the curve without restricting

its deformation. To illustrate these ideas, we construct a

simple constant (infinite-dimensional) velocity model of the

contour and then derive an associated filter that predicts and

estimates the contour and its deformation based on local

image statistics. For simplicity, in this work we consider

simple intensity statistics, but local spatio-temporal filters can

be used as well.

II. GEOMETRY IN THE SPACE OF CURVES

We define the geometry on the space of “shapes,” defined

from now on as the set of simple, closed planar curves, or

“contours”. This is the foundation for constructing dynamical

systems and filtering strategies on deforming shapes.

A. The Space of Curves

We define the space of plane immersed curves as

M = {c ∈ C∞(S1, R2) : |c′(θ)| 6= 0∀θ ∈ S
1}; (II.1)

we are interested in geometric curves, i.e., considered up to

reparameterizations; thus, we define the quotient space

B = M/Diff(S1) (II.2)
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where Diff(S1) denotes the group of diffeomorphisms of S
1,

the circle. It can be shown that M and B are manifolds

[14], and the tangent space TcM at c of M is the set of

deformations h ∈ TcM , which are vector fields on c, i.e.,

h : S
1 → R

2. In order to define a (Riemannian) metric, we

must specify an inner product 〈·, ·〉 on TcM , which we do

in the next section, so that M and B become Riemannian

manifolds. To define the horizontal space of TcM , i.e., the

tangent space to B at c, T[c]B, we first define the vertical

space as

VcM = {h ∈ TcM : h = βcθ, β : S
1 → R}. (II.3)

This is the set of deformations of c that do not change the

geometry of the curve c. Given an inner product on TcM ,

we may define the horizontal space as

WcM
.
= T[c]B = (VcM)⊥ =

{h ∈ TcM : 〈h, k〉 = 0, ∀k ∈ VcM}. (II.4)

Assuming that the inner product on TcM defines a Rie-

mannian metric, we are able to define distances on B,

geodesics (i.e., shortest paths), the exponential map, and

parallel transport. All these operations will be essential to

define dynamical models in the infinite-dimensional space

of curves, as described in the previous section. We defer

the computation of these operations to the next section, and

restrict ourselves to their definition in this section. Given two

curves1 [c0] and [c1], we define

Definition II.5: The distance, d : B × B → R
+, on B or

M is

d([c0], [c1]) = inf
φ∈Diff(S1)

inf
γ∈Γ(c0,c1◦φ)

Len(γ) (II.5.∗)

where Γ(c0, c1) = {γ : [0, 1] → M : γ(0) = c0, γ(1) = c1},

Len(γ) =

∫ 1

0

‖γ̇(t)‖γ(t) dt, (II.5.†)

γ̇(t) ∈ Tγ(t)M is the velocity or deformation of γ(t), and

‖ · ‖γ(t) is the norm on Tγ(t)M .

It can be shown that the infima above must be attained by a

path γ∗ that satisfies γ̇∗(t) ∈ Wγ(t)M . We define

Definition II.6: A geodesic between [c0] and [c1] is a path

γ∗ that attains the infimum in (II.5.∗). Equivalently, up to a

re-parameterization of the path γ∗, γ∗ solves

inf
φ∈Diff(S1)

inf
γ∈Γ(c0,c1◦φ)

E(γ) (II.6.∗)

where

E(γ) =

∫ 1

0

‖γ̇(t)‖2
γ(t) dt (II.6.†)

is the energy of the path γ.

We may now define the exponential map as

Definition II.7: The exponential map, exp : TB → B,

where TB is the tangent bundle of B, is

exp[c](h) = γ(1),

1The notation [c] indicates that a curve represents an equivalence class
under the equivalence relation (II.2).

where γ : [0, 1] → B is the geodesic with γ̇(0) = h ∈ T[c]B.

Definition II.8: The inverse of the exponential map, which

we call the logarithm, log : B × B → TB is

log([c0], [c1]) = γ̇(0) ∈ T[c0]B

where γ : [0, 1] → B satisfies γ(0) = [c0], γ(1) = [c1] and

is the geodesic between [c0] and [c1].
Finally, we define parallel transport as

Definition II.9: The parallel transport, Pγ,t0,t1 :
Tγ(t0)B → Tγ(t1)B, along a path γ : [0, 1] → B from

t0 ∈ [0, 1] to t1 ∈ [0, 1] of the tangent vector h ∈ Tγ(0)B is

Pγ,t0,t1(h) = V (t1)

where the vector field, V (t) ∈ Tγ(t)B is such that

∇γ′(t)V (t) = 0, V (0) = h

where ∇γ′ is the covariant derivative along γ.

B. A Geometric Sobolev-Type Metric

We now define a Riemannian metric H on the tangent

space TcM . First, for c ∈ M and h ∈ TcM , we define the

following decomposition:

h = ht + hlΠ1(c) + hd (II.10)

where ht is the component of h that translates the centroid

of c, hlΠ1(c) is the component of h that changes the

scale (length) of c, and hd = h − ht − hlΠ1(c) is the

component of h that deforms c without scale or translation.

The components ht and hl of h are defined as

ht = dc · h =

∫

p(h) ds ∈ R
2 (II.11)

hl = dL(c) · h =

∫

h · D2
scds ∈ R (II.12)

where s is the arclength parameter of c and
∫

·ds
.
=

1

L(c)

∫

c

·ds (L(c) = length of c)

Π1(c)
.
= c − c (c = centroid of c)

p(h)
.
= h − (h · Dsc)Dsc − (h · D2

sc)Π1(c),

If h, k ∈ TcM , then we define the Riemannian metric as

〈h, k〉Hc

.
= ht · kt + hlkl +

∫

Dsh
d · Dsk

d ds, (II.13)

where the first two products are the Euclidean dot products,

and the last term is a normalized geometric Sobolev metric.

Therefore, in this metric, centroid translations, scale changes

and deformations of the shape are orthogonal. We choose this

metric for the following reasons:

1) Sobolev-type metrics favor smooth but otherwise unre-

stricted infinite-dimensional deformations, a desirable

property for tracking a highly deforming object.

2) Sobolev-type metrics have proven useful in framewise

image segmentation for visual tracking because of their

coarse-to-fine evolution behavior [23].

3) It will be shown in the next section that geodesics in
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this metric (i.e., the optimization problem in (II.5.∗))

can be computed efficiently.

C. Computing Geodesics, exp, and log

Let C : [0, 2π] × [0, 1] → R
2, (θ, t) → C(θ, t) denote

a time varying family of closed curves (i.e., a homotopy)

corresponding to some path γ : [0, 1] → M , i.e., C(θ, t) =
γ(t)(θ). Then we have that

‖∂tC‖2
H = |∂tC|2 + (∂t(log L(C)))2

+

∫

|Ds(∂tC)d|2 ds (II.14)

Using the above fact and some manipulation one can show

that geodesics in this metric are invariant to scale and

translations:

Proposition II.15 (Invariance of geodesics.): Let c0, c1 ∈
M and let c̃1 = v + eλ(c1 − c1) be a scaling and translation

of c1. Suppose that C is a homotopy connecting c0 to c1,

and let C̃ = tv + etλ(C −C) be a homotopy connecting c0

to c̃1; then

E(C) = E(C̃) + const

where the “constant term” depends only the end curves c0, c1

and on v, λ. As a corollary we obtain that C is a geodesic

connecting c0 to c1 if and only if C̃ is a geodesic connecting

c0 to c̃1.

The conservation of momenta and (II.14) imply that

Proposition II.16 (Momenta): • [translation] ∂tC is

constant along geodesics;

• [scaling] ∂t(log L(C)) is constant along geodesics;

• [rotation] 〈AC, ∂tC〉H is constant along geodesics for

any antisymmetric matrix A;

• [reparametrization] 〈fDsC, ∂tC〉H is constant along

geodesics for any f : S
1 → R.

This in particular means that along any geodesic C,

C = (1 − t)c0 + tc1 (II.17)

log L(C) = (1 − t) log L(c0) + t log L(c1). (II.18)

The previous result along with Proposition II.15 implies that

to compute a geodesic in M between c0 and c1, we apply

the following procedure:

1) Define

c̃0
.
=

c0 − c0

L(c0)
, c̃1

.
=

c1 − c1

L(c1)

2) Compute a geodesic C̃ between c̃0 and c̃1 in the space

Md of unit length curves with centroid at the origin

3) Rebuild the geodesic in M :

C(t, ·) = L1−t(c0).L
t(c1).C̃(t, ·) + (1 − t)c0 + tc1.

We have therefore reduced the problem to computing

geodesics in the space Md of unit length curves with centroid

at the origin. To do this, we exploit the map Φ introduced

by Younes et al. in [27], [28]: let e, f ∈ Vod
.
= {f : S

1 →
R|f(0) = −f(2π)} then

c(ξ) = Φ(e, f)(ξ)
.
=

1

2

∫ ξ

0

(e + if)2(θ) dθ (II.19)

where i denotes the imaginary unit. The inverse of Φ exists,

and is known as the square-root lifting. Note that for c above

to be a closed curve and of unit length, we must have that

(e, f) belong to

St(2, Vod) =

{(e, f) ∈ Vod : ‖e‖L2 = ‖f‖L2 = 1, 〈e, f〉
L2 = 0}

where the above L
2 norms and inner product are the standard

ones on L
2([0, 2π]). The above set, St(2, Vod), is known as

a Stiefel manifold, which is classically defined as the set of

all p (1 ≤ p ≤ n) orthonormal vectors in R
n. It is shown

in [28] that Φ is an isometry between St(2, Vod) and Md

endowed with the Sobolev metric:

Theorem II.20 (2.2 in [28]): Let cd ∈ Md, hd ∈ TcMd

and (e, f) ∈ St(2, Vod), (δe, δf) ∈ T(e,f)St(2, Vod) be the

corresponding Stiefel representations. Then
∫

cd

|Dsh
d|2 ds =

∫ 2π

0

(δe)2 + (δf)2 dθ,

that is, the Sobolev-type Riemannian metric in Md is mapped

to the flat metric L
2 in St(2, Vod).

Therefore, the theorem above allows us to compute geodesics

in Md by computing the corresponding geodesics in

St(2, Vod) and then mapping them back to Md via the map

Φ.

Geodesics in Stiefel manifolds, St(p, Rn), are known to

have closed form solutions as demonstrated by [9]:

Proposition II.21 ([9]): Let Y : [0, 1] → St(p, Rn) be a

path, then the geodesic equation (when the Euclidean metric

is used) is

Ÿ + Y (Ẏ T Ẏ ) = 0. (II.21.∗)

The solution is

(Y (t)eAt, Ẏ (t)eAt) = (Y (0), Ẏ (0)) exp t

(

A −S
I A

)

(II.21.†)

where A = Y T (0)Ẏ (0), S = Ẏ T (0)Ẏ (0), and I is the p×p
identity matrix.

The solution, while written for St(p, Rn), extends to

St(2, Vod). Indeed, (II.21.†) shows that Y (t) remains in

the space spanned by {Y (0), Ẏ (0)} for all t. Let (e, f) ∈
St(2, Vod) and (δe, δf) ∈ T(e,f)St(2, Vod) be initial con-

ditions of the geodesic in St(2, Vod). We may define an

orthonormal basis B = {e, f, ẽ, f̃} ⊂ span({e, f, δe, δf}).
Let a, b ∈ R

4 be the representations of δe, δf relative to B,

then we may define Y (0) = (e1, e2) where e1 = (1, 0, 0, 0)T

and e2 = (0, 1, 0, 0) and Ẏ (0) = (a, b) and then apply

(II.21.†) to obtain the geodesic Y (t) = (Y1(t), Y2(t)) in the

coordinates of the basis B. The geodesic in St(2, Vod) is

then given by

e(t) = Y 1
1 (t)e + Y 2

1 (t)f + Y 3
1 (t)ẽ + Y 4

1 (t)f̃

f(t) = Y 1
2 (t)e + Y 2

2 (t)f + Y 3
2 (t)ẽ + Y 4

2 (t)f̃

where Y i
j denotes the ith component of Yi ∈ R

4.

The formula (II.21.†) gives the geodesic as a function of

the initial position and direction; this is the exponential map.
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However, to compute geodesics between two curves or the

logarithmic map, it is necessary to have a formula for Y in

terms of the boundary conditions Y (0) and Y (1). We are

not aware of such a formula at this time, and therefore, to

compute the geodesic and logarithm between Y0 = (e1, e2)
and Y1 ∈ R

4 × R
4, we minimize the energy

E(λ, v1, v2, v3, v4) = |Y (1) − Y1|
2 (II.22)

where Y (1) is given according to (II.21.†) with the ini-

tial condition Ẏ (0) = ((0, λ, v1, v3)
T , (−λ, 0, v2, v4)

T ). We

minimize (II.22) by standard gradient descent in R
5, and

the gradient of (II.22) can be computed using a formula for

matrix exponentials in [13]. This can be computed efficiently

using an FFT technique similar to a technique found in [26],

where we refer the reader for details.

Up to this point, we have specified how to compute

geodesics, the logarithm and exponential maps in M ac-

cording to the metric H; however, we are interested in these

operations in the geometric space B. To do this, we note that

geodesics in B (with the metric induced from M ) correspond

to geodesics in M provided they are horizontal, i.e., γ̇(t) ∈
Wγ(t)M, ∀t. Equivalently, it is enough that γ̇(1) ∈ Wγ(t)M
and γ be a geodesic in M for γ to be a geodesic in B. Thus,

to compute a geodesic between [c0], [c1] ∈ B, we iterate the

following steps

1) Compute the geodesic, (eφk
(t), fφk

(t)), t ∈ [0, 1], in

M between (e0, f0) and

√

φ̇k(e1 ◦ φk, f1 ◦ φk)
2) Compute the vertical component

(ve, vf ) =

(
1

2
αθeφk

(1)+α
d

dθ
eφk

(1),
1

2
αθfφk

(1)+α
d

dθ
fφk

(1))

of (e′φk
(1), f ′

φk
(1)) where α : S

1 → R solves

Ωθ(eφk
(1), e′φk

(1)−ve)+Ωθ(fφk
(1), f ′

φk
(1)−vf ) = 0

(II.23)

and Ωθ(a, b) = a.bθ − b.aθ.

3) Set φk+1 = φk − εα where ε > 0 is small

Note that φk ∈ Diff(S1) and φ0 is set to the identity on

S
1. The idea of this algorithm is illustrated in Figure 1. The

geodesic (eφk
(t), fφk

(t)), t ∈ [0, 1] (in M ) for large k will

approximate the geodesic in B.

Figure 2 shows an example geodesic in B.

III. DYNAMICAL MODEL FOR DEFORMING SHAPES

We start by considering a simple “constant-velocity plus

perturbation” model for a point moving in R
n

µk = µk−1 + νk−1

νk = νk−1 + ηk−1 (III.1)

where the state is xk = (µk, νk), ηk−1 is a noise process,

and µ represents the position and ν the velocity. When

{ηk} is a white Gaussian process, this is a discrete-time

Brownian motion, or first-order random walk. This model

can be considered to be a first-order approximation to a more

complicated dynamical system when the temporal statistics

Fig. 1. The dashed lines represent equivalence classes of curves (Oc is
the orbit [c]), and Wc is the horizontal space to c. To compute geodesics
in B, we compute the geodesic in M between c0 and c1 ◦ φ (the staircase
path), project γ̇ to its vertical component (tangent to Oc1◦φ), and move c1
to another representative determined by the vertical component, and iterate
the process until the vertical component becomes zero.

of {ηk} are colored. We assume that we are given noisy

measurements of the first component of the state, i.e.,

yk = µk + ξk (III.2)

where ξk is the measurement noise.

We now generalize the above dynamical model from R
n

to the case of curves. Denote with µk ∈ B the deforming

contour, and νk ∈ Tµk
B its velocity at time k. The state

at time k is xk = (µk, νk). Note that we may define the

analogous operation to addition, i.e., µk+νk in a Riemannian

space, by using the exponential map. Also, since νk and νk−1

are not in the same space in the case of curves (i.e., νk ∈
Tµk

B and νk−1 ∈ Tµk−1
B), the expression νk = νk−1 +

ηk−1 is not defined, and we must transport νk−1 to Tµk
B via

parallel transport. Therefore, “the constant-velocity” model

in the space of curves becomes

Definition III.3 (Discrete Brownian Motion on Curves):

µk = expµk−1
(νk−1) ∈ B (III.3.∗)

νk = Pµ,k−1,k(νk−1 + ηk−1) ∈ Tµk
B (III.3.†)

where xk = (µk, νk) ∈ TB is the state, ηk−1 ∈ Tµk−1
B is a

noise process, and Pµ,k−1,k denotes parallel transport along

the geodesic connecting µk−1 to µk. Note that the noise

process lives in a linear space, where it is easy to define a

Gaussian distribution.

We will assume that noisy samples of the contour µk are

available at each time k, for instance from any segmentation

scheme from the active contour literature:

Definition III.4 (Measurement Model):

yk = expµk
(ξk) ∈ B (III.4.∗)

where ξk ∈ Tµk
B is the measurement noise.

The measurement is a noisy version of the first component

of the state, µk. Again, notice that ξk lives on a linear space,

where a Gaussian distribution can be easily defined.

IV. FILTERING DEFORMING SHAPES

In this section, the goal is to devise a recursive estimation

procedure to estimate the state of the dynamical system,

(µk, νk), i.e., the shape and velocity of a moving object,
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Fig. 2. Example illustration of a geodesic in B. The geodesic is computed between the two red end curves (time t = 0 and t = 1), and intermediate
curves (interpolation) are between in red. The blue curves (t = 1 to t = 2) are the continuation of the geodesic (extrapolation) from the last red curve.

introduced in the previous section from measurements yk

obtained from the time-varying image, Ik. We start by

reviewing the classical linear finite-dimensional (Luenberger)

observer in R
n, then generalize it to the space of curves.

An observer in R
n for the dynamical system (III.1) and

measurement model (III.2) takes the form

µ̂k|k−1 = µ̂k−1|k−1 + ν̂k−1|k−1 (IV.1)

ν̂k|k−1 = ν̂k−1|k−1 (IV.2)

µ̂k|k = µ̂k|k−1 + Kµ(yk − µ̂k|k−1) (IV.3)

ν̂k|k = ν̂k|k−1 + Kν(yk − µ̂k|k−1) (IV.4)

the first two equations are the state prediction, the last two

equations are the update, and Kν , Kν > 0 are called the

gains, which can be chosen to satisfy some optimality crite-

rion. The weakest requirement, for time-invariant models, is

that the error

ek = xk − x̂k|k

between the state estimate and the true state approaches zeros

as k → +∞.

The analogous observer in the case of the dynamical

system on the space of curves takes the following form:

Definition IV.5 (Curve Observer): The prediction is

µ̂k|k−1 = expµ̂k−1|k−1
(ν̂k−1|k−1) (IV.5.∗)

ν̂k|k−1 = Pµ̂k−1|k−1,µ̂k|k−1
(ν̂k−1|k−1) ∈ Tµ̂k|k−1

B;
(IV.5.†)

where Pµ̂k−1|k−1,µ̂k|k−1
denotes parallel transport along the

geodesic from µ̂k−1|k−1 to µ̂k|k−1. 2 The update is

µ̂k|k = µ̂k|k−1 (IV.5.‡)

ν̂k|k = ν̂k|k−1 + K log(µ̂k|k−1, yk). (IV.5.§)

where K > 0 is a constant that can be chosen to trade off

asymptotic tracking error with convergence speed. Note that

the sum in the last equation is well defined as ν̂ lives on a

linear space.

Remark IV.6: The Luenberger observer structure involves

a direct effect of the measurements through a gain ma-

trix K that has two components, Kµ affecting µ, and

Kν affecting ν. In this case the update equations would

be µ̂k|k = expµ̂k|k−1
(Kµ log(µ̂k|k−1, yk)), and ν̂k|k =

2Note that the parallel transport Pµ̂k−1|k−1,µ̂k|k−1
(ν̂k−1|k−1) is trivial

to compute since it is the parallel transport along a geodesic of its own
tangent vector. The parallel transport is computed as γ̇(1) where γ is
the geodesic between γ(0) = µ̂k−1|k−1 and γ(1) = µ̂k|k−1, which is
automatically obtained when evaluating (IV.5.∗).

Pµ̂k|k−1,µ̂k|k
(ν̂k|k−1 + Kν log(µ̂k|k−1, yk)). The latter re-

quires parallel-transport of a tangent vector that is not

tangent to the geodesic path to be transported along, which

entails solving a differential equation numerically. While this

is certainly possible, we consider the simplified observer

structure where the correction occurs at the velocity level,

and therefore Kµ = 0.

V. EXPERIMENTS

The following experiments are meant to illustrate the

behavior of the dynamical model that we have constructed,

and thus, we have chosen a very basic segmentation tech-

nique to obtain the measurements yk. The measurements yk

are obtained by performing an active contour segmentation

using the Chan-Vese energy [4] and Sobolev active contours

[22], [23] with the initialization being the state contour

prediction, µ̂k|k−1. The initialization of the state contour,

µ̂0|0, is chosen by hand and the state velocity ν̂0|0 is chosen

to be zero. Further, we have chosen the gain K = 0.2
unless specified otherwise. The red curve indicates the state

prediction contour µ̂k|k−1, the blue arrows indicate the state

prediction velocity ν̂k|k−1, and the green curves indicate the

measurement yk all at frame k.

In the first experiment (Fig. 3), we track a circle that

continuously deforms (by a non-affine deformation) into two

joined blobs. The data is corrupted by a full occlusion in

frames 6-11 (the sequence ranges from 1-13). In frame 1,

we choose the contour initialization to match the circle’s

boundary. In the top row, we have used a dynamical model

and filter on the affine motion parameters of the object as

is typical in prior work. In the bottom row, we have used

the proposed method, which defines a dynamical model and

filters on the space of curves. At the moment of occlusion

(t = 6), we set the gain K = 0 in which case the filter

ignores the measurements yk, and moves according to state

dynamics for t ≥ 6 with the initial velocity v̂6|6. In the

case that only affine dynamics are considered, the shape

of the object is not captured accurately. The dynamical

model on arbitrary deformations more accurately captures

the deformation and shape of the object.

In Fig. 4 and 5, we track a deforming flatworm in the

ocean. Fig. 4 shows the proposed filtering technique applied

to the sequence. The experiment demonstrates that the con-

stant velocity plus perturbation model (whose trajectory is

shown in red and blue arrows) does a good job of predicting

and extrapolating the boundary and motion of the object.

In Fig. 4, we compare our proposed model to a filtering
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Fig. 3. Tracking a synthetic deforming circle through a total occlusion: this experiment demonstrates the need for the dynamical model that extrapolates
the shape. In the first few frames, where there is no occlusion, the image segmentation (green) alone provides the correct tracking. However, when the
occlusion appears, the image segmentation is wrong, but the dynamical model extrapolates the shape (red) and velocity (blue) of the contour (middle
frames). A dynamical model with only affine motion dynamics (top row) does not capture the deformation of this object through the dynamics. The last
frame shows that the state dynamics have accurately captured the object. Red: µ̂k|k−1, the blue: ν̂k|k−1 and the green: yk .

Fig. 4. Tracking a flatworm (left to right, top to bottom) using the proposed
filtering technique: the red curve is µ̂k|k−1, the blue arrows are ν̂k|k−1,
and the green curve is the measurement yk . This experiment demonstrates
the dynamics of the contour and deformation under the constant velocity
plus perturbation model, which does a decent job of modeling the dynamics
of the flatworm.

strategy that only filters and models on the affine motion.

As can be seen from the figure, the proposed model which

filters arbitrary deformations, gives far greater accuracy of

the deforming object than the affine motion model. Indeed,

the proposed model predicts a contour that is close enough

to the desired local minimum of the Chan-Vese energy that

an accurate measurement is obtained. In contrast, the affine

model predicts a contour that is far away from the desired

local minimum that the measurement leaks into light portions

of the background.

VI. CONCLUSION

We have introduced what is, to the best of our knowl-

edge, the first ever filtering and prediction scheme on the

infinite-dimensional space of shapes, defined as simple,

closed planar contours undergoing general diffeomorphisms.

Previous work has either attempted to “separate” the “mo-

tion” (a finite-dimensional group) from the “deformation”,

and defined observers for dynamical models on the finite-

dimensional motion parameters, or has restricted the set of

allowable deformations to finitely-parametrized classes, for

instance obtained from manually obtained training data. The

problem with the former approach is that it fails to predict de-

formations; as an object undergoes an occlusion, the tracker

can extrapolate its affine motion, but not its deformation.

We have shown that predicting deformations allows us to

significantly decrease prediction error. The problem with

the latter approach is that it requires having training data

available for the classes of objects and deformations that

one wishes to track. While this is realistic for objects like

humans walking, it becomes prohibitive when one wants to

consider more gaits (limping, running, hopping), or more

objects (flatworms, jellyfish, hurricanes) for which training

data may not be available.

Deriving a dynamic observer on the space of curves

is no easy feat, and we have had to tap onto the most

recent advances in the shape analysis and active contour

literature, classical results in Differential and Riemannian

geometry, and classical results in prediction and filtering

theory. We have illustrated the case of (first-order) random

walk dynamics, but our approach can be easily extended to

any linear dynamics, for instance auto-regressive moving-

average models of any order. This is made possible by the

fact that the stochastic processes driving the dynamics are

defined on the tangent spaces to the state-space, which are

linear and therefore standard tools from systems theory can

be applied, albeit with care because these linear spaces are

still infinite-dimensional.

While one may wish to bypass the significant mathemati-

cal burden by discretizing the objects of interest at the outset,

for instance by using a piecewise linear contour, or a spline or

Bezier curve, this introduces difficulties later on. In fact, the

location of control points or vertices can move while keeping

the data unchanged, which results in an un-observable model,

and therefore cause spurious dynamics in the observer. This

problem is further exacerbated when one wishes to generalize

the approach to tracking surfaces in space. Our approach

avoids these representational issues by modeling directly the

native objects – closed simple planar contours – in the space

where they belong, leaving the discretization to the last stage

of computation, which is the numerical integration of the

partial differential equations implementing the observer. Our

approach has been demonstrated on sequences of deforming

objects.
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Fig. 5. Comparison between dynamical model only on the motion (scale
and translation) on the left column and dynamical model on both the motion
and deformation (right column). On the left column it can be seen that the
predicted shape fails to adapt to the newly deformed object; on the right
column, where both motion and deformation are extrapolated, the object is
predicted with far greater accuracy. Red: µ̂k|k−1, blue: ν̂k|k−1, and green:
yk .
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