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ABSTRACT: This paper presents a novel medical image registration algorithm that explicitly models the physical con-
straints imposed by objects or sub-structures of objects that have differing material composition and border each other,
which is the case in most medical registration applications. Typical medical image registration algorithms ignore these
constraints and therefore are not physically viable, and to incorporate these constraints would require prior segmentation
of the image into regions of differing material composition, which is a difficult problem in itself. We present a mathemati-
cal model and algorithm for incorporating these physical constraints into registration / motion and deformation estimation
that does not require a segmentation of different material regions. Our algorithm is a joint estimation of different material
regions and the motion/deformation within these regions. Therefore, the segmentation of different material regions is
automatically provided in addition to the image registration satisfying the physical constraints. The algorithm identifies
differing material regions (sub-structures or objects) as regions where the deformation has different characteristics. We
demonstrate the effectiveness of our method on the analysis of cardiac MRI which includes the detection of the left ventri-
cle boundary and its deformation. The experimental results indicate the potential of the algorithm as an assistant tool for

the quantitative analysis of cardiac functions in the diagnosis of heart disease.

1 INTRODUCTION

Registration of medical images is of utmost importance for
a number of applications in medicine. Typically, medical
images are composed of many interacting parts and sub-
structures, and each of these parts have different physical
laws governing their motion and deformation (or at least
different parameters from the same governing equations).
For example, in the case of cardiac MRI registration, the
deformation of ventricles and the myocardium (heart mus-
cle) satisfy different governing equations because of dif-
fering material composition. Therefore, in order to cor-
rectly register medical images, one must first segment or
detect each of the sub-structures where different govern-
ing laws hold, and then register the sub-structures based on
the equation that holds for the particular sub-structure. Of
course, now the problem becomes performing the segmen-
tation. Current methods for medical image registration as-
sume that the segmentation is given (usually done by hand
or segmentation techniques in hardware, see for example,
[5, 2, 12]) or completely ignore this problem, register the
images directly, and hope that good choices of regulariza-
tion can overcome this predicament ([17, 16, 9]). Even
when manual segmentation is done perfectly, and when
the registration is performed correctly (which is highly
unlikely due to noise and modeling errors) in each sub-
structure, there is no guarantee that physical constraints for
the deformation across sub-structures are satisfied.

In this work, we propose a novel registration method that

models materials of different composition and therefore
differing laws of deformation in each of the sub-structures

composing the image, and the physical constraints of the
deformation that must occur across sub-structures. We ac-
complish this by automatically detecting (segmenting) sub-
structures using their discriminating dynamics or defor-
mation. The deformation in each sub-structure is simulta-
neously computed while the sub-structures are estimated.
Further, physical constraints across sub-structures are nat-
urally incorporated into a unified optimization framework
for the deformation and the sub-structure segmentation.
Although our framework is valid in a number of registra-
tion scenarios (e.g., brain registration), we demonstrate the
idea on the analysis of cardiac MRI, of critical importance
[14, 2, 12], which includes the detection of the left ventri-
cle boundary, its deformation, and the deformation in the
surrounding area, i.e., the myocardium. For simplicity, we
illustrate the formulation on an image comprosed of two
sub-structures, although the formulation may be similarly
extended to any number of sub-structures.

2 MATHEMATICAL METHODOLOGY

In this section, we formulate a mathematical model for reg-
istering medical images (and determining motion and de-
formation of objects within the image) under the assump-
tion that several objects and/or sub-parts that are com-
posed of different materials are imaged. This is the case,
for example, in brain MRI (white / gray matter) and car-
diac MRI (ventricles / myocardium). We model differing
dynamics among sub-parts and the constraints that are im-
posed across the common boundaries of sub-parts.



2.1 Interaction Between Inhomogeneous Materials

We start by considering the most basic assumption govern-
ing deforming objects typical in medical imagery, that is,
the conservation of mass. This assumption is reasonable for
cardiac MRI, and is a good approximation in other cases of
interest. The assumption is not central to the thesis of the
work, which is to model the constraints and interactions
among neighboring sub-parts, and our method is general
and can be used with other governing equations. We will
see however, that the mass conservation property leads to
the standard equations that are typically used in image reg-
istration.

We assume that the domain of the object(s) of interest
is 2 C R™ (where n = 2 or n = 3 depending on whether
we wish to model in two or three dimensions). Within a
homogeneous material (e.g., the myocardium or ventricle
in cardiac MRI) of an object, the differential form of the
conservation of mass implies the continuity equation:

pt +div (pv) =0 (D

where p : [0,1] x Q2 — R denotes the density of the mate-
rialand v : [0, 1] x © — R™ denotes the infinitesimal veloc-
ity of the material, p; denotes differentiation with respect to
the first variable, and div () indicates the divergence opera-
tor. The first parameter of p and v is time denoted by ¢, and
the second parameter z indicates spatial location. Note that
the above equation holds within regions of the same ma-
terial characteristics, but not across material boundaries.
Noting that tissue is composed mostly of water and there-
fore, can be considered as an incompressible fluid [15], we
have that

div (v) =0, 2)

and therefore, (1) reduces to
pr+Vp-v=0 (3)

within materials of the same material composition. Here
Vp denotes the spatial gradient (derivative with respect to
x). We may replace p in (3) with the image intensity [ :
[0,1] x Q@ — R since in many imaging modalities such as
MRI and CT, the intensity represents a conserved quantity
[15] via roughly proportionality to the density, and thus

The above equation is equivalent to the differential
form of the brightness constancy equation [11] for two-
dimensional images which is commonly used in the com-
puter vision literature.

Assuming that the input image is composed of two dif-

fering material regions (for example, the myocardium and
ventricles in cardiac MRI), we have that

Ii(t,x) + VI(t, ) - vour(t,x) =0 x €int(Q\Ry)
(5)
where () is the domain of the image, R; C ) denotes the
first material region (as a function of t), and v;;, and vyt
(defined on R; and Q\ Ry, respectively) denote the veloci-

{It(t,a:) FVI(ta) vim(t,z) =0 z€int(Ry)

ties inside Ry, the first region, and 2\ Ry, the second ma-
terial region. The notation int (R;) indicates the interior of
the set R; (not including the boundary). The formulation
may be similarly extended to any number of material re-
gions, but we choose to illustrate our technique on two re-
gions for simplicity.

Note that the differing statistics of v;;, and vg,; due to
material differences make determining the unknown Ry
possible. The solution of (5) is not unique and therefore,
regularization is required, as typical in determining optical
flow in computer vision. Even with typical regularization
(for example, assumption of spatial smoothness of the ve-
locity fields), the equations (5) still do not yield a unique
solution without specification of a boundary condition on
ORy, the boundary of Ry, which is an extra condition not
needed in optical flow problems. However, this can be re-
solved by noting the physical constraint that the velocity
(not the density p) must be continuous across the boundary
OR; of material regions:

Vin(t,2) = Vot (t,x), © € ORy. 6)

The constraint above makes it possible to solve (5) directly
on OR; when the image is two-dimensional. Indeed, one
can show, by solving (5) and (6) directly on O R, that

(VIin(t, {E) - vjout (ta :C))L
VIin(t,x) - Vg (t,2)t

vp(t,x) = I(t,x) ,x € ORy

(7)
where vy(t,2) = vin(t, ) = Vous(t,x), © € ORy, wh de-
notes a vector perpendicular to w, and VI;,, and V1, de-
note the limits of the gradients approaching the boundary
OR; from within int (R;) and int (2\ R;), respectively. The
expression holds when VI;;, and VI, are non-parallel,
and are non-zero. In other words, the expression breaks
down when there is no discontinuity of the gradient an-
gle of the image across the material boundary. The expres-
sion also holds in three-dimensions except the expression
no longer yields a unique solution.

2.2 Energy-Based Formulation for Registration

In order to determine the registration between images in the
sequence, one would need to determine the velocity field v
for each time ¢ at every spatial location. The registration
(cumulative motion/deformation between two images) ¢ :
[0,1] x Q — € between the image at time zero and time ¢
can be obtained by integration:

o(t,x) :x—i-/o v(T, ¢ (x))dr, (8

where v| Ry = vy, |Q\ Rt = vout, and v|0 Ry = vy. There-
fore, we need to determine v;;,, Vo, Note that since v, is
supported on Ry and v, is supported on Q\ Ry, R; either
must be known or it must be estimated from the data. Our
approach is to jointly estimate v;,, Vot and R; as part of
an optimization problem.

We setup an optimization problem incorporating the
conditions (5) and the constraint (6). The energy that we



propose is

1
E(R7 Uin7Uout77)b) = / fin(vin(t7$)) dx dt
0 JR:
1
+/ Jout(Vour (t, ) dadt
0 JO\R:

1
+ / Fomdry (03(t,2)) dS () dt
0 OR:
)

where vy, is the velocity defined on OR; for all ¢, and dS
denotes the surface area element (or arclength element if
n = 2). Further, the optimization is subject to the con-
straint vp(t, ) = vin(t,2) = vout(t,x), © € ORy. An aux-
iliary variable v has been added to the energy in order to
simplify imposing the constraint (6). The functions f are
defined as follows :

fln(vzn) = (It + Vi, VI)Q + Reg(vm) (10)
fout(vin) = (It + Vout * VI)Q + Reg(vout) (1 1)
fbndry(vb) = (It + vp - VI’WL)2 + (It + vp - vIout)2

+ Reg(vp) (12)

where Reg indicates a regularization term that includes
spatial and time regularity, e.g., Reg(vin) = |Vuin|? +
|04vin|?. Further, another constraint that is imposed is

Ry =¢(t, R), (13)

that is, the region at time ¢ is obtained by warping the ini-
tial region R along the velocity field. Note that we exclude
weighting in (9) each of the terms for ease of presentation,
but they are used in practice.

The use of regularization of v;,, and v,,; as seen above
is to regularize the brightness constancy equation (such a
motion prior is realistic since the motion within homoge-
neous regions in medical imagery is smooth spatially and
in time). The sophisticated deformation in many organs
(e.g., the heart) makes the use of TV regularization [4],
which favors piecewise constant motion and therefore pop-
ular in computer vision, unsuitable. We choose not to in-
corporate the closed form solution (7) directly, but instead
incorporate the constraint (6) and (5) into the term fp, 4.
Therefore, the portion of the energy due to the term fy,4r
is small when the constraints are satisfied. Due to noise,
pointwise estimates of v using (7) may not provide an ac-
curate estimate of v, and when VI;,, and V I,,,,; are close to
parallel, numerical problems may arise, and therefore, we
work with the constraints directly and further add regular-
ity of the velocity along the boundary as in fy,qy.

In order to simplify matters for optimization, we assume
n = 2 (the image is two-dimensional), omit regularization
of the vector fields v;,, Vout, Vp and R; in time and the con-
straint R; = ¢(R), and in this case, the region and veloc-

ities can be computed by optimizing the following energy
for each time ¢:

E(Ra 'Uinvvoutavb) = / [(It + Vin * VI)2 + |vvln|2] dz
R

+ / [(It —+ Vout * VI)2 + |Vvout|2} dz + / ds
O\R OR

+ / (Tt + 06 - VIin)? + (I + v - Viour)® + | (v6)s]*] ds
OR

subject to vy = Viy, = Voyur 0N OR. (14)

The variable s denotes the arclength parameter of R, and
(uvp)s denotes the derivative with respect to the arclength.
We suppress the time variable in R; and the velocities in
the above energy for convenience. The integral over time
has been eliminated since Ry and the velocities at time
t" are treated as independent of R; and the velocities at
time . The formulation assumes that the images are sam-
pled fine enough in time so that the motion/deformation
between frames is small. This is realistic in cardiac MRI,
which we test in the experiments. Larger deformations be-
tween consecutive frames can be handled using multiscale
methods and/or ideas in [5], but we forgo this to illustrate
the main concept of modeling interactions between differ-
ent materials and constraints across material boundaries.

2.3 Relation of the Model to Existing Work

The first two terms of the energy (14) are reminiscent of the
energy used in Motion Competition [8] in computer vision
where the objective is to segment objects that move with
differing velocities. Each of the objects are described by
parametric motions. We do not restrict the model of mo-
tion to simple parametric models such as translations or
affine motions, as the motion of the heart is much more
sophisticated, and further the velocity in our model is con-
tinuous across OR (although the derivatives need not be),
something that has not been considered before and re-
quires added reasoning and sophistication. Each of the
first two terms of the energy (14) are identical to Horn &
Schunck optical flow [11], however, we extend the model
to model discontinuities in the gradient of the velocity field
across (unknown) material boundaries. One can think of
our model as an extension of the Mumford and Shah model
[13] to deformations with an added physical constraint of
continuous (and not differentiable) motion across bound-
aries.

The energy (9) can be thought of as a generalization
of the popular Large Deformation Diffeomorphic Metric
Mapping (LDDMM) [5] framework used in medical im-
age registration. In LDDMM, only one region R = € is
assumed, and therefore, constraints across boundaries of
differing materials are not considered. The first term of (9)
with the constraint (8) is similar to the energy considered
in LDDMM, and regularization across material boundaries
is performed - an undesirable property. Our framework can
include multiple differing material regions, and these re-



gions are estimated as part of the optimization process. Our
energy (9) is also related to the Riemannian formulation
of optimal mass transport methods for image registration
[10]. In those methods, R = ) and the first term of (9)
that contains the term Iy + VI - v;;, is the mass preserva-
tion constraint used in [10] with the additional constraint
of incompressible motion. The regularization of v;,, differs
in mass transport methods, however, and the penalty is on
the magnitude of v;,, rather than Vv;,, as in our case.

2.4 Optimization Method

We now present a method to optimize the energy in (14).
The optimization of E consists of an alternating minimiza-
tion in vy, Vip, Vout, and R. First, fixing R, vy, Vo and
optimizing in vy through variational calculus, we find the
following condition, which is an ODE defined on OR, and
ensures a global optimum for a given R:

— () ss + (VI VIL + V10 VIE Yoy, =

— Ii(V1, + Vi) (15)

with circular boundary conditions. The subscripts in the ex-
pression (vp)ss denotes the second derivative with respect
to the arclength parameter of 0 R. The above equation can
be discretized as a sparse linear system and can be solved
efficiently.

The vector field vy, that is defined on OR is the boundary
condition for v;,, and v, and with this condition, we may
optimize F for v;, and v,,; holding v, and R fixed. The
global optimum solution for the given R and vy is given by
the solution of the following decoupled PDE:

—Avip, +VIVITvy, = —L,VI  onint(R)
—Avout + VIVITvpy = —L;VI  onint(Q\R)
Vin = Vout = Vb on OR,

(16)
We impose the standard Neumann boundary conditions for
Uout 0N O, as typical in optical flow problems. These PDE
can be solved efficiently using a conjugate gradient solver
as (16) forms a positive definite linear system.

Finally, holding vy, Vi, Vous fixed, one can solve for R
using an iterative technique, and for simplicity, we use a
gradient descent to optimize E in R (see [6, 7]), although
other methods may be used (e.g., [3]). Setting ¢ = OR, the
gradient descent equation is

Orc = [(It +vp - Viin)? = (It + vy Vipu)®

+| Vi 2 = |Vvou|? + ] N (17)

where A denotes the inward normal vector of ¢, x denotes
the curvature of ¢ = OR, and 7 denotes an artificial vari-
able that parameterizes the evolution of c. Note that the
variation of the last term in E (14) is neglected by weight-
ing that term arbitrarily small in this last step of optimizing
with respect to R.

The optimization algorithm, in summary, is given by the

following steps:

1. Initialize R

2. Solve the ODE (15) on JR for v

3. Solve the PDE (16) with boundary condition vy
4. Update the region R by an iteration of (17)
5

. Repeat Steps 2-4 until convergence of 12

3  EXPERIMENTAL RESULTS

In this section, we present experimental results on real car-
diac MRI data to illustrate the performance of our method
in determining motion and deformation of the left ventri-
cle (LV) and surrounding areas, and also the left ventricle
boundary. Region R will represent the LV and Q\ R rep-
resents everything other than the LV. Therefore, we model
only the material differences across the LV boundary. In
these experiments, images I; and I> at two consecutive
time instances are taken from a sequence of cardiac MRI
images, and I; = Iy — I, VI = VI in the energy E. The
results obtained by our method are shown in Figure 1. We
initialize the region R as a small seed point within the LV,
and this is hand initialized. Snapshots of the evolution of
¢ = OR representing the LV boundary and the deformation
field in the interior, v;,, and the exterior, v,,:, of the left
ventricle are shown in Figure 1 for two different example
pairs of images.

We provide comparison to a standard segmentation
method [7], the Chan-Vese method, which assumes a
piecewise constant distribution of the image intensity and
two regions. The segmentation is performed on the image
1. Also, for comparison, we provide standard optical flow
results using the Horn-Schunck method [11] to estimate the
deformation between the images I; and I (not using the
region R at all in the computation). In Figure 1, the top row
displays images I and I5, the segmentation result obtained
by the Chan-Vese method, ground truth for the left ventri-
cle boundary, and the optical flow obtained by the Horn-
Schunck model in the standard color coding scheme [1].
The curve evolution for the left ventricle boundary from
the initial (left) to the final (right) is presented on the mid-
dle row. The registration result obtained by the deformation
field at different various time steps, 7, is shown on the bot-
tom row.

The experimental results demonstrate that our model
provides an accurate boundary for the left ventricle and the
obtained deformation field agrees with the physical mo-
tion characteristics of the left ventricle and its surrounding
region. The fact that the LV is detected quite accurately
indicates also that the deformation is accurate (since in-
accurate deformation would lead to errors in estimation of
the LV). As can be seen from the deformation recovered by
our method, the discontinuity of the gradient of the defor-
mation across the detected LV is clearly sharp and visible,
unlike the standard Horn- Schunck method. Our method
is shown to be robust to the inhomogeneity of the inten-
sity distribution within the left ventricle. Indeed, the dark
regions within the LV are valves, and our method captures
them more accurately than segmentation based on intensity



such as the Chan-Vese method. This desirable property is
inherited from our model that considers the physical laws
of motion and deformation and the interactions and con-
straints across materials of different chemical composition.

4 CONCLUSION

We have proposed a novel general framework for medi-
cal image registration in which several objects or sub-parts
described by differing material properties are explicitly
modeled and the constraints of their motion/deformation
across parts are incorporated. This is ignored in prior work
on medical image registration to the best of our knowl-
edge, where a common deformation field obeying smooth-
ness properties is assumed on the entire domain of the im-
age, and thus ignoring physical constraints of the deforma-
tion field across substructures. As a by-product, our algo-
rithm also automatically determines the sub-structures in a
unified optimization framework in which the deformation
and boundary of the sub-structures are simultaneously esti-
mated. This not only achieves a more physically plausible
registration (estimation of deformation), but also yields the
detection of sub-structures, which are of clinical interest in
many applications. In our method, the characteristic feature
employed in determining the object/ sub-part boundaries is
the inhomogeneity of deformation across material bound-
aries, and thus our method is applicable to objects with so-
phisticated appearance in which distributions of intensity
are not discriminative to distinguish object(s)/sub-parts(s).
Objects with such sophisticated appearance are typical in
medical images.

To illustrate proof-of-concept, we have implemented a
simplified version of our general model (9) which is given
by the energy described in (14). In this simplification,
we have made the assumption that the deformation across
the sequence is uncorrelated, and the region describing an
object/sub-part is uncorrelated in time. The simplification
leads to a rather simple alternating optimization scheme.
The algorithm has been demonstrated on cardiac MRI in
the application of detecting the left ventricle and estimating
its deformation, although the technique is general for many
medical registration scenarios. We have shown that our al-
gorithm accurately detected the left ventricle, provided the
deformation that agreed with physical constraints, and es-
timated the deformation outside the left ventricle in the
myocardium region. In comparison to standard intensity-
based image segmentation, our method achieves better re-
sults, and a more physically plausible deformation. The re-
sults demonstrate its effectiveness and potential for quan-
titative analysis of cardiac functions. Future work includes
implementing the full model (9), and testing it on 3D data.
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Figure 1: This figure shows the segmentation of the left ventricle from a sequence of cardiac MRI data. (Top tow) image
I, image I, segmentation result by the Chan-Vese method, ground truth for the left ventricle region, optical flow by Horn-
Schunck model. (Middle row) segmenting curve initialization, snapshots of the segmenting curve evolution in time and
the final segmentation of the left ventricle by our method. (Bottom row) standard color coding scheme for the optical flow,
snapshot of the deformation field evolution in time, and the final deformation field by our method. See text for assessment
of the results.



