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1 Morse Functions

1.1 Notation

We consider functions f : R2 → R+ as models for images. Define the gradient as

∇f(x) :=
(
∂f

∂x1
(x),

∂f

∂x2
(x)
)T

where x = (x1, x2),

and define the Hessian as

∇2f(x) :=

(
∂2f
∂x2

1
(x) ∂2f

∂x1x2
(x)

∂2f
∂x2x1

(x) ∂2f
∂x2

2
(x)

)
.

Define a level set of a function at level a ∈ R+ as

f−1(a) := {x ∈ R2 : f(x) = a}.

1.2 Basics of Morse Functions

Definition 1 (Critical Point). • For a C1 function, a critical point p ∈ R2 is a point such that
∇f(p) = 0.

• A critical point p is a local minimum point if ∃ δ > 0 such that f(x) ≥ f(p) for x such that
|x− p| < δ.

• A critical point p is a local maximum point if ∃ δ > 0 such that f(x) ≤ f(p) for x such that
|x− p| < δ.

• A critical point p is a saddle point if it is neither a local minimum or local maximum.

Definition 2 (Morse Function). A Morse function f is a C2 function such that all critical points are
non-degenerate, i.e., if p is a critical point, then det∇2f(p) 6= 0.

Remark 1. • By Taylor’s Theorem, we see that Morse functions are well approximated by quadratic
forms around critical points:

f(x) = f(p) +∇f(p) · (x− p) + (x− p)T∇2f(p)(x− p) + o(|x− p|2)

= (x− p)T∇2f(p)(x− p) + o(|x− p|2)

provided that f(p) = 0 (if not, set f to f − f(p)).

∗Department of Computer Science, University of California, Los Angeles

1



• In particular, this means that Morse functions have isolated critical points.

The previous Remark, leads to the following observation:

Theorem 1 (Morse Lemma). If f is a Morse function, then for a critical point p of f , there is a neighborhood
U 3 p and a chart (coordinate change) ψ : Ũ ⊂ R2 → U ⊂ R2 so that

f(x̂) = f(pi) +


−(x̂2

1 + x̂2
2) if p is a maximum point

x̂2
1 + x̂2

2 if p is a minimum point
x̂2

1 − x̂2
2 if p is a saddle point

where (x̂1, x̂2) = ψi(x1, x2) and (x1, x2) ∈ R2 are the natural arguments of f .

Figure 1: The Morse Lemma states that in a neighborhood of a critical point of a Morse function, the level
sets are topologically equivalent to one of the three forms (left to right: maximum, minimum, and saddle
critical point neighborhoods).

Remark 2. Morse originally used the previous Theorem as the definition of Morse functions. Defining in
that way does not require that a Morse function be differentiable.

1.3 Examples of Morse/non-Morse Functions

Examples of Morse/Non-Morse functions are the following:

• Obviously, f(x1, x2) = x2
1 + x2

2 and f(x1, x2) = x2
1 − x2

2 are Morse Functions.

• The height function f : S → R2 of the embedding of a compact surface S ⊂ R3 without boundary is a
Morse function. For example, the height function of the torus:

• f(x1, x2) = x4
1 + x4

2 is not a Morse function (degenerate critical point).
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• A monkey saddle, i.e., f(x1, x2) = x3
1 − 3x1x

2
2:

is not a Morse function (degenerate; level sets of saddle must cross at an ‘X’).

• All non-smooth functions are not Morse functions, e.g., images that have edges!

• Functions that have co-dimension one critical sets (e.g., ridges and valleys) are not Morse functions.
Such critical sets are commonplace in images!

1.4 Morse Functions are (Almost) all Functions

Morse functions seems to be a very restricted class of functions from the previous examples, however, a basic
result from Morse Theory says that Morse functions are essentially all functions!

Definition 3 (Dense Subset of a Normed Space). Let ‖ · ‖ denote a norm on a topological space X. A set
S ⊂ X is dense if closure(S) = X, i.e., for every x ∈ X and δ > 0, there exists s ∈ S such that ‖s−x‖ < δ.

Theorem 2 (Morse Functions are Dense). Let ‖ · ‖ denote the C2 norm on the space of C2 functions, i.e.,

‖f‖ = sup
x∈R2

|f(x)|+ |∇f(x)|+ |∇2f(x)|.

Then Morse functions form an open, dense subset of C2 functions.

Remark 3. • Therefore, any smooth (C2) function can be well approximated by a Morse function up to
arbitrary precision (defined by ‖ · ‖).

• For example, ridges and valleys can be approximated with a Morse function, e.g., consider the following
circular ridge that can be made Morse by a slight tilt. Let f(x1, x2) = exp (−(

√
x2

1 + x2
2 − 1)2) which

is a ridge and non-Morse:
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Now consider the function g(x1, x2) = f(x1, x2) + εx1, which is arbitrarily close to f (in C2 norm)
and is a Morse function:

• Note it is a basic fact that C2 functions under the norm above are dense in all square integrable functions
(L2) functions. Therefore, even non-smooth functions can be approximated to arbitrary precision by
Morse functions.

2 Reeb Graph

2.1 Basic Definitions

Definition 4 (Equivalence Relation). Let X be a set. An equivalence relation on X denoted ∼ is a
binary relation with the following properties: for all x, y, z ∈ X:

• (reflexivity) x ∼ x

• (symmetry) if x ∼ y then y ∼ x

• (transitivity) if x ∼ y and y ∼ z, then x ∼ z

We denote by [x] all elements of X related to x, e.g., [x] = {y ∈ X : x ∼ y}.

Definition 5 (Topological Space). A topology denoted T on a set X is a collection of subsets of X (called
open sets) such that the following properties hold:

• ∅, X ∈ T

• for Uα ∈ T where α ∈ J is an index set (perhaps uncountable), we have
⋃
α∈J Uα ∈ T .

• for Ui ∈ T where i ∈ I is a finite index set, we have
⋂
i∈I Ui ∈ T .

Definition 6 (Quotient Space). Let X be a topological space. Let ∼ denote an equivalence relation on X.
The quotient space of X under the equivalence relation ∼, denoted X/ ∼ is the topological space whose
elements are

X/ ∼ := {[x] : x ∈ X},
and whose topology is induced from X. The quotient map is the (continuous) function π : X → X/ ∼
defined by π(x) = [x].

Definition 7 (Reeb Graph). Let f : R2 → R be a function. Define a equivalence relation ∼ on the space
Graph(f) := {(x, f(x)) : x ∈ R2} by

(x, f(x)) ∼ (y, f(y)) iff f(x) = f(y) and there is a continuous path from x to y in f−1(f(x)).

The Reeb graph of the function f , denoted Reeb(f), is the topological space Graph(f)/ ∼.
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Remark 4. The Reeb graph of a function f is the set of connected components of level sets of f (with the
additional information of the function value of each level set).

2.2 Examples

We will depict the Reeb graph in the following way: an element [(x, f(x))] ∈ Reeb(f) will be represented by
a point p[(x,f(x))] in the x− y plane, and if f(z1) > f(z2) then the y-coordinate of p[(z1,f(z1))] will be larger
than p[(z2,f(z2))].

• f(x1, x2) = x2
1 + x2

2

• f(x1, x2) = exp [−(x2
1 + x2

2)] + exp [−((x1 − 1)2 + x2
2)]

• f(x1, x2) = exp [−(x2
1 + x2

2)]− 0.1 exp [−10((x1 − 0.2)2 + x2
2)]
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• f(x, y) = exp
[
−(x2

1 + x2
2)
]

+ exp
[
−((x1 − 3)2 + x2

2)
]

+ exp
[
−((x1 + 3)2 + x2

2)
]

2.3 Properties of Reeb Graphs

Lemma 1 (Reeb graph is connected). If f : R2 → R is a function, then Reeb(f) is connected.

Lemma 2 (Reeb Tree). If f : R2 → R is a function, then Reeb(f) does not contain cycles.

Remark 5. Both of these results follow from basic results in topology, namely, that connectedness and
contractibility of loops are preserved under quotienting. That is, since Graph(f) is connected and loops in
Graph(f) are contractible (so long as f is continuous), we have that Reeb(f) = Graph(f)/ ∼ must also have
these properties.

Assume now that f : R2 → R is a Morse function whose critical points have distinct values, then we
may associate an attributed graph to Reeb(f).

Definition 8 (Attributed Graph). Let G = (V,E) be a graph (V is the vertex set and E is the edge set),
and L be a set (called the label set). Let a : V → L be a function (called the attribute function). We define
the attributed graph as AG = (V,E, L, a).

Definition 9 (Attributed Reeb Tree of a Function). Let V be the set of critical points of f . Define E to be

E = {(vi, vj) : i 6= j, ∃ a continuous map γ : [0, 1]→ Reeb(f) such that
γ(0) = [(vi, f(vi))], γ(1) = [(vj , f(vj))] and γ(t) 6= [(v, f(v))] for all v ∈ V and all t ∈ (0, 1)}. (1)

Let L = R+, and
a(v) = f(v).

Definition 10 (Degree of a Vertex). Let G = (V,E) be a graph, and v ∈ V , then the degree of a vertex,
deg(v), is the number of edges that contain v.

Theorem 3. Let f : R2 → R+ be a Morse function with distinct critical values. Let (V,E,R, f) be its
Attributed Reeb Tree. Then

1. (V,E) is a connected tree

2. n0 − n1 + n2 = 2 where n0 is the number of maxima, n1 the number of saddles and n2 the number of
minima

3. If v ∈ V and v is a local minimum/maximum, then deg(v) = 1

4. If v ∈ V and v is a saddle, then deg(v) = 3

Remark 6. Property 2 above is a remarkable fact from Morse Theory, which is more general than it is
shown above. Indeed, given a compact surface S ⊂ R3, the number n0 − n1 + n2 is the same for any Morse
function f : S → R+, i.e., n0 − n1 + n2 (although seemingly a property of the function) is an invariant of
the surface S.

Remark 7. Using the fact that for any tree (V,E), we have that |V | − |E| = 1 and Property 2, we can
conclude by simple algebraic manipulation that deg(v) = 3 for a saddle.

Theorem 4 (Stability of Attributed Reeb Tree Under Noise). Let f : R2 → R be a Morse function and set
gε = f + εh where h : R2 → R is C2. Then for all ε sufficiently small, gε is Morse and ART (f) = ART (gε).
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2.4 Diffeomorphisms and the Attributed Reeb Tree

Definition 11 (Diffeomorphism of the Plane). A function ψ : R2 → R2 is a diffeomorphism provided that
∇ψ(x) and ∇ψ−1(x) exists for all x ∈ R2.

Theorem 5 (Invariance of ART Under Diffeomorphisms). Let f : R2 → R be a Morse function and
ψ : R2 → R2 be a diffeomorphism. Then ART (f) = ART (f ◦ ψ).

Remark 8. • Note that if p is a critical point of f , then ψ−1(p) is a critical point of f ◦ ψ:

∇(f ◦ ψ)(ψ−1(p)) = ∇ψ(ψ−1(p)) ◦ ∇f(ψ(ψ−1(p))) = ∇ψ(p) ◦ ∇f(p) = 0 if ∇f(p) = 0.

Therefore the vertex set in the ART of both f and f ◦ ψ are equivalent.

• Moreover, if γ is a continuous path in f−1(f(x)) then ψ ◦γ is a continuous path in (f ◦ψ)−1(f ◦ψ(x)),
as diffeomorphisms do not break continuous paths. Therefore, the edge sets in the ART of f and f ◦ψ
are equivalent.

Theorem 6. If f, g : R2 → R are Morse functions with distinct critical values and if ART (f) = ART (g),
then there exists a monotone function h : R→ R and a diffeomorphism ψ : R2 → R2 such that f = h ◦ g ◦ψ.

Remark 9. By the Morse Lemma, we can construct diffeomorphisms ψi around critical points, the idea is
then to “stitch” these diffeomorphisms up with “patches” to form the diffeomorphism ψ of interest.

Theorem 7 (Reconstruction of Function from ART). If (V,E) is a tree such that each vertex v ∈ V is of
degree 1 or 3, then there exists a Morse function f : R2 → R such that ART (f) = (V,E).

Definition 12 (Orbit Space). Let X be a set, and G be a group.

• G acts on X if each g ∈ G is also g : X → X such that

1. For each g, h ∈ G and x ∈ X, (gh)x = g(hx).

2. For the identity element e ∈ G, we have ex = x for all x ∈ X.

• If G acts on X, then the orbit of a point x ∈ X is Gx = {gx : g ∈ G}.

• Define an equivalence relation in X by x ∼ y if there exists g ∈ G such that gx = y. The orbit space
(or the quotient of the action G) is the set X/G = {[x] : x ∈ X}.

Theorem 8. Let F be the set of Morse functions with distinct critical values, H denote the set of monotone
functions h : R→ R, and W denote the set of diffeomorphisms of the plane. Then

• H ×W acts on F through the action : (h,w)f := h ◦ f ◦ w for h ∈ H, w ∈ W, and f ∈ F .

• The orbit space F/(H×W) = T where T is the set of trees whose vertices have degree 1 or 3.

Remark 10. The second result above is simply a restatement of the Theorems above. Indeed, we can define
the mapping ART : F/(H×W )→ T by

ART ([f ]) := ART (f), where [f ] = {(h,w)f ∈ F : (h,w) ∈ H ×W}

The function above is well-defined since by Theorem 5, any representative g ∈ [f ] will have the same At-
tributed Reeb Tree. Note

• Theorem 6 states that ART : F/(H×W )→ T is injective.

• Theorem 7 states that ART : F/(H×W )→ T is surjective.

• Therefore, ART : F/(H×W )→ T is a bijection and therefore, F/(H×W ) = T .
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