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Abstract

We present a region-based active contour detection algo-
rithm for objects that exhibit relatively homogeneous pho-
tometric characteristics (e.g. smooth color or gray levels),
embedded in complex background clutter. Current methods
either frame this problem in Bayesian classification terms,
where precious modeling resources are expended represent-
ing the complex background away from decision bound-
aries, or use heuristics to limit the search to local regions
around the object of interest. We propose an adaptive look-
out region, whose size depends on the statistics of the data,
that are estimated along with the boundary during the de-
tection process. The result is a “curious snake” that ex-
plores the outside of the decision boundary only locally
to the extent necessary to achieve a good tradeoff between
missed detections and narrowest “lookout” region, drawing
inspiration from the literature of minimum-latency set-point
change detection and robust statistics. This development
makes fully automatic detection in complex backgrounds a
realistic possibility for active contours, allowing us to ex-
ploit their powerful geometric modeling capabilities com-
pared with other approaches used for segmentation of clut-
tered scenes. To this end, we introduce an automatic initial-
ization method tailored to our model that overcomes one
of the primary obstacles in using active contours for fully
automatic object detection.

1. Introduction

In [16], Mumford and Shah proposed a model of images
with piecewise smooth statistics. While simplistic in terms
of its generative power, this model has proven useful for
discriminative purposes, and has served as a basis for im-
age segmentation algorithms implemented using Level Set

Methods [17]. Indeed, [6] consider an even simpler model,
involving piecewise constant image statistics, that is used in
fields ranging from medical image analysis to forensics and
entertainment. The power of this method lies in the explicit
representation of the null and alternate hypotheses (fore-
ground/background), that compete for the decision without
the need for ad-hoc thresholding, a mechanism exploited in
region competition [25]. This model has also been extended
to color [2], texture [22, 19, 20], and motion [9].

The strengths of this model, however, turn into limita-
tions when the underlying assumptions are stretched. Fig.
1 illustrates this phenomenon. The object of interest (called
“foreground”) often has homogeneous (constant or smooth)
statistics, e.g. the heart chambers in Fig. 1. However, the
remainder of the image (the “background”) is certainly not
well approximated by a constant gray value. As a result,
detecting the boundaries of the chambers, a seemingly easy
task, is hampered by the structure of the background, which
ends up influencing the boundary more than the character-
istics of the object of interest. Of course, any reasonable
image (for instance, one that is L2-integrable) can be ap-
proximated arbitrarily well with a collection of constant
functions, so the model [6] is still valid, but not with two
(foreground/background), but rather with a larger number
of regions, most of which unrelated to the object of inter-
est (Fig. 1 bottom-right). While techniques to extend [6]
to multiple “phases” have been proposed, they are cumber-
some, reflecting fact that, for anything more than two re-
gions, the optimization problem associated with [6] is no
longer convex [5].1 The alternative to a fine partition of
the image domain linked to simple functions is a coarser
partition (e.g. foreground/background) with respect to more

1This reflects the fact that, with only one phase transition, the classi-
fication problem is masked as a regression problem: One is not looking
for whether the object of interest is in the image. One is told so, and the
question becomes that of localizing the object, or determining its boundary.
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complex functions, say smooth functions, leading us back
to the Mumford-Shah functional. In either case, much of
the modeling power is devoted to the background (Fig.
1). These difficulties have prompted practitioners to devise
heuristics, for instance restricting the domain of the image
to a box around the curve, or to a dilation of the curve by an
amount proportional to the area within 2. The shortcomings
of these approaches are obvious, as there is no reason why
the structure of the boundary of a region should depend on
how large the region is. For the purpose of detecting a dis-

Figure 1. Segmentation of a heart chamber using [6] (top-right, red
curve), starting from the initial condition (top-left), is impeded by
the fact that the background does not fit the constant model. Ex-
tension to multi-phase segmentation (bottom-left, each region is
color-coded, and the object of interest corresponds to the white re-
gion) is complex and highly non-convex. Extension to more com-
plex models, such as [16] (bottom-right) is also laborious (Fig. 4).
In both cases, precious modeling and computational resources are
expended to capture the structure of the background away from the
object of interest.

continuity, that is a classification task, a generative model is
useful only insofar as it determines the classification bound-
ary. Modeling energy expended to represent the distribution
away from the decision boundary is all but wasted [24]. In
our case, the distributions of intensity values specifying the
null and alternate hypotheses (foreground/background) are
defined in the co-domain of the image (intensity, color, tex-
ture descriptors etc.), but the decision boundary is defined
on its domain, Ω ⊂ D. This is the situation considered in
the problem of set-point change detection, which, for one-
dimensional causal signals, is treated as an optimal stopping
time [11], using the mathematics of filtrations and Martin-
gales.

Robust Statistical methods are designed precisely for this
situation, when the null hypothesis (the object of interest)

2For example, in the work of [14] the size of the dilated region is a
parameter of the algorithm.
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Figure 2. One scanline from Fig. 1: The detection of the boundary
c should be performed as soon as possible, d, so as not to have
irrelevant background impinge on the decision (past the right-most
dashed line).

fits a rather simple model, and one is not interested in char-
acterizing the alternate hypothesis, i.e. the statistics of the
background, other than the fact that they do not fit the fore-
ground model. Thus one could approach the problem in Fig.
1 by seeking some kind of robust detector, which would in-
evitably involve sensitive thresholds that may not survive
the large variability of data customary, for instance, in med-
ical image analysis.

Consider, for example, a one-dimensional scan-line from
Fig. 1, where the boundary of interest is c. Clearly, the
statistics of the signal far away from c are of little interest in
determining the location c (Fig. 2). Therefore, a hypotheti-
cal traveler traversing the signal would seek to localize the
transition c with the smallest possible latency, d − c, for a
given level of false alarm rate. For cases when the statistics
of the signal are known, the solution to this problem is pro-
vided in [23]. Unfortunately, we do not know the statistics.
If, on the other hand, dwas given to us, but not the statistics,
we could use [6]. Unfortunately, we do not know d.

To develop some intuition, let us consider an even sim-
pler version of the one-dimensional example, whereby the
statistics before and after the transition are Gaussian, just
with different means µ, µ̄ and standard deviations σ, σ̄. It
is immediately clear that if σ is very small and the “jump”
µ− µ̄ is large relative to the standard deviations σ1 + σ2, it
can be safely detected with a small latency d−c. In the limit
where σ → 0, when the function is continuous, it can be de-
tected instantaneously. If, on the other hand, the deviation
of the signal from its mean before the jump is high, it will
take longer to integrate the statistics and realize that there
has indeed been a transition. This suggests making the area
of the “lookout region”, which is the region immediately
outside the object of interest, dependent on the statistics of
the image inside.3 We call the ensuing model, which we

3In principle, it should depend on the ratio between the gap between
the means, and the sum of the standard deviations, but this would lead
to a model that is too complex to optimize, so we restrict to the model



describe in the next section, the “Curious Snake.” It is curi-
ous, but cautious, for it peaks over the edge far enough to be
sure, but not too far as to run into trouble due to the statistics
of the background away from the transition of interest.

1.1. Non-interacting multiple-phase variational re-
gion segmentation

This deceivingly simple adaptation makes a significant
difference in applications, as exemplified in Fig. 1, where
one is interested in objects with relatively simple photom-
etry embedded in complex clutter, without having to spend
resources modeling the clutter. We use the plural “objects,”
because this technique, with multiple regions initialized on
a regular tiling of the image, easily allows detecting mul-
tiple transitions without the need for complex interactions
of multiple level set functions. In fact, our experiments thus
far suggest that this is perhaps the most significant and most
practical benefit of this approach as it opens up a realis-
tic possibility for fully automatic segmentation of objects in
images with cluttered backgrounds.

Most of the existing schemes to extend region-based seg-
mentation to multiple phases, including logic combinations
of level set functions and recursive partitioning, suffer from
interaction among regions, that generates a highly com-
plex residual landscape that renders the optimization highly
prone to local minima. As such, these methods are highly
sensitive to initial contour placement in the presence of clut-
ter. Even when trying to devise automated methods that
seed the entire image domain with small, alternating, regu-
larly spaced initial contours, the sensitivity of multi-phase
methods to the choice of the seed size and spacing can ex-
hibit itself in the simplest of images (see Fig. 9).

In this paper we tackle the important problem of fully au-
tomatic initialization of multi-phase segmentation schemes
head-on. Our goal is to devise a generic initial condition
that will, with high probability, yield convergence to the
global minimum, consisting of multiple phases – whether
the statistics capture intensity, color, texture, or motion.

2. Formalization

In this section we derive our model in steps. First we
consider the simple problem of segmenting an image at the
pixel level, based on binary classification of its gray levels.
We call the image I : D ⊂ R2 → [0, 255] ⊂ R+; x 7→
I(x), and indicate with θ ∈ Rk the parameters of the model,
for instance θ = {µ, σ} for the case of a Gaussian model.
We indicate the likelihood of the model parameters (fore-
ground model) θ as p(I|θ). We indicate the alternate hy-
pothesis (background model) with p(I|θ̄). A simple binary
classifier can be arrived at by summing the log-probability

depending only on the standard deviation.

of error, for both missed detections and false alarms, and
then finding a threshold τ̂ such that

τ̂ = arg min
τ

∫ τ

0

log p(I|θ)dP (I) +

∫ 255

τ

log p(I|θ̄)dP (I)

(1)
where P (I) is a measure on the intensity values, which
could be uniform in [0, 255] if no prior knowledge is avail-
able. This basic thresholding model is not very useful for
object detection, as it does not enforce spatial continuity,
that we know to be relevant from empirical studies on the
statistics of natural images [15]. The Mumford-Shah (M-S)
model seeks to overcome this limitation, by minimizing the
same cost functional above, but placing the decision bound-
ary (threshold) not on the gray values, but on the location x
instead. For the case of a single scan-line, assumed to start
at the center of the object of interest, we have

τ̂ = arg min
τ

∫ c

0

log p(I(x)|θ̄)dν(x)+

∫ d

c

log p(I(x)|θ)dν̄(x)

(2)
where ν(x) is a measure on the domain D, for instance the
uniform measure dν(x) = dx. If d is fixed, for instance at
the boundary of the image domain d ∈ ∂D, then [6] can
be used to localize the boundary c as well as to estimate the
statistics θ, θ̄ that are most discriminative. If, on the other
hand, the statistics are known, then [23] can be used to find
d that yields the smallest latency d − c for a given level of
false alarms. For the case of a (two-dimensional) image, the
threshold c (decision boundary) is represented by a curve
∂Ω bounding a region Ω ⊂ D; the lookout d is represented
by a region D ⊃ Ω, so the function being minimized, given
by the integrals above, reads

E
.
=

∫
Ω

log p(I(x)|θ̄)dν(x)+

∫
D\Ω

log p(I(x)|θ)dν̄(x)+Γ(Ω)

(3)
where Γ denotes a regularizer, for instance the length of
∂Ω. We now focus on the log-probability of error, i.e. the
integrands above. The probability of missed detection (first
integrand) depends on how well the data I at position x fits
the background model θ̄. There is a penalty when data in the
foreground fits the background model well, and this penalty
is integrated on the foreground hypothesis Ω, which is by
definition a compact region. False alarms similarly depend
on how well the data I at a position x outside the foreground
region nevertheless fit the foreground model θ, regardless
of where x is relative to the foreground. If we keep ev-
erything else constant and double the region D, the model
above counts twice as many false alarms, contrary to our
intuition that a false alarm becomes less likely as we move
away from the decision boundary Ω. In other words, in-
stead of characterizing the probability of error (both missed
detection and false alarms) based only on photometric prop-



erties I of the data, we wish to account for geometric prop-
erties of the data as well, namely proximity to the decision
boundary ∂Ω. This can be accounted for in the measure
ν(x).

As suggested in Sect. 1 for the case of a Gaussian model,
the probability p(I|θ) ∝ exp(−d2

σ(I, µ)) is a function of
the distance dσ(I, µ) = |I−µ|

σ from the intensity value to
the mean intensity µ; we want to extend it to also be a func-
tion of the distance of the point x from the boundary of Ω.
In particular, we want the distance from the boundary in
one region (foreground/background) to be a function of the
statistics of the data in the other, for instance on the back-
ground we have

dν̄(x) = p(x|Ω, θ)dx (4)

and similarly dν(x) = p(x|Ω, θ̄)dx where, for the case of a
Gaussian model, we have

p(x|Ω, θ) ∝ exp(−d2
σ(x,Ω)) (5)

and

dσ(x,Ω)
.
= min

y∈Ω

‖x− y‖
σ

. (6)

For the case of missed detection, since the region Ω is by as-
sumption compact and the dispersion σ̄ of the background
is large, in general dν(x) = p(x|D\Ω, θ̄)dx will be essen-
tially constant, and therefore we simply take dν(x) = dx.
Thus, the first term of the error functional E above remains

Einside =

∫
Ω

log p(I(x)|θ̄)dx. (7)

For the background, however, we have

Eoutside =

∫
D\Ω

log p(I(x)|θ)p(x|Ω, θ)dx (8)

plus the usual regularizer Ereg = Γ(Ω), leading to

Ω̂ = arg min
Ω,λ1,λ2

E = Einside + λ1Eoutside + λ2Ereg. (9)

A simpler version of this functional can be arrived at fol-
lowing the rationale of [6]; assuming Gaussian densities,

the energies above become Einside =
∫

Ω
−
(
I−µ̄
σ̄

)2

dx,

and Eoutside =
∫
D\Ω−

(
I−µ
σ

)2

dx, minimizing which is

equivalent to minimizing Einside =
∫

Ω

(
I−µ
σ

)2

dx, and

Eoutside =
∫
D\Ω

(
I−µ̄
σ̄

)2

dx. Note that we have switched
the sign, and as a consequence the roles of the inside and
outside statistics have swapped. This is equivalent to as-
suming that the probability p(x|Ω, θ) is uniform in D\Ω:

p(x|Ω, θ) ∝ χD\Ω(x) (10)

If we assume σ = σ̄ = 1, we obtain the model of [6]. In
our case, rather than fixing D, we allow it to change as a
dilation (lookout) of Ω proportional to the statistics of the
image inside:

D = ∆σ(I|Ω)Ω (11)

where ∆σ denotes a dilation by σ and, for the case of a
Gaussian model,

σ2(I|Ω) =

∫
Ω
|I − µ|2dx∫

Ω
dx

. (12)

Therefore, while the “inside” term of [6] remains the same,
the “outside” term is now controlled by the statistics of the
image inside:

E(Ω, µ, µ̄, λ1, λ2)
.
=

∫
Ω

|I(x)− µ|2dx+

+ λ1

∫
∆σ(I|Ω)Ω\Ω

|I(x)− µ̄|2dx+ λ2Γ(Ω). (13)

The minimization of this functional involves computing its
variation with respect to the unknowns Ω, µ, µ̄, which we
do in Sect. 3.

In the next section we discuss the details of the mini-
mization of the model (13). The optimization of a more
general model that separates local histograms that we use
for more complex data types is more involved but concep-
tually poses no challenges.

3. Implementation
To solve the optimization problem (13), we implement

an (infinite-dimensional) gradient flow, corresponding to a
partial differential equation (PDE), that evolves an initial
contour towards a fixed point, corresponding to a (local)
minimum of (13), as customary in the active contour frame-
work. The PDE is implemented on a discrete grid using
Level Set methods [17]. To this end, we need to compute the
first variation of the functional (13) with respect to changes
of the boundary of the region Ω, and perform an incremen-
tal update in the (opposite) direction of the gradient. To this
end, we call C .

= ∂Ω the contour, and use t to indicate the
iteration. Therefore, C = C(x, t) evolves over “time,” with
only changes along the (outward) normal direction N ∈ S1

affecting the deformation of the contour, in a way that is
proportional to −∇E, so that at the fixed point ∇E = 0,
i.e. the first-order optimality conditions are satisfied. We
call s the arc-length parameterization of the contour C.

The derivation of the first variation of E is standard,
for instance [6], except for the derivative of Eoutside, and
specifically for its dependency of the domain Ω, now rep-
resented by the boundary C. So, we focus our attention on



that term, which for convenience we write as∫
f(x)H(σ(I|C)− d(x,C)︸ ︷︷ ︸

.
=F (C,x)

)dx (14)

where f(x)
.
= (I(x) − µ̄)2, H is the Heaviside function,

d(x,C) is the distance function from the point x ∈ R2 to
the contour C, and σ(I|C) is defined in (12), except that
the dependency on the region Ω is now written, with a slight
abuse of notation, in terms of its boundary C = ∂Ω. The
first variation is computed by taking the total derivative of
E with respect to time, which in turn depends on the partial
derivative of C with respect to time Ct

.
= ∂C

∂t , and consists
of two terms. The first is standard:∫

C

〈Ct,−f(C(s))H(F (C,C(s)))N〉ds (15)

the second is∫
D\Ω

f(x)H′(F (C, x))
d

dt
F (C, x)︸ ︷︷ ︸∫

C〈Ct,∇CF (C,x)(s)〉ds

dx =

=

∫
C

〈Ct,

∫
D\Ω

f(x)H′(F (C, x))∇CF (C, x)(s)dx〉ds. (16)

Consequently, the gradient flow is given by

Ct = f(C)N +

(∫
D\Ω

f(x)H′(F (C, x))∇CF (C, x)(s)dx

)
.

(17)
A straightforward but suboptimal implementation can be

arrived at by discounting the second term, and only focusing
on the first.

Note that the first term, f(C) can be written in terms of
an optimal constant value µ∗, which can be found by taking
the derivative of f(x)H(d(x,C) − σ(I|C)), yielding (I −
µ∗)H(d(x,C) − σ(I|C)) = 0, that brings the dependency
of the statistics of the image inside the region Ω into the first
variation of the component of the cost functional outside of
it. This is the model we test empirically in the experimental
section that follows.

3.1. Automatic initialization procedure

One of the most important advantages of this new model
is its ability to robustly segment multiple distinct objects
within a cluttered image by exploiting the fact that separate
contours evolving within an image domain utilize indepen-
dent “look ahead” regions (even if these overlap) and there-
fore do not have to be artificially coupled in their evolutions
as do active contours implemented via multi-phase meth-
ods. This greatly reduces their dependence on the initial-
ization and allows us to pair an automatic initialization pro-
cedure with our model. It is precisely this highly practical
benefit that allows us to take seriously the idea of utilizing
this class of active contour for fully automatic detection of

one or more objects amidst complex background clutter, a
possibility that is not realistic for most other active contour
models.

In a two-phase variational segmentation scheme, where
strong convexity results are available, one can tile the image
with a regular sampling of contours, and verify empirically
that a two-phase scheme converges to the “correct” solution
with high frequency. Our goal is to devise a similar generic
initialization scheme for multi-phase segmentation, by pro-
viding seed initializations consisting of an initial position
and initial velocity.

To this end, we tile the image with “seeds”, consisting of
a set of small regularly-spaced circular contours. This is the
“initial position”, whereby each seed is a point in the resid-
ual surface we are trying to minimize. We expect that some
of these seeds will fall all within target regions, and some
will intersect region boundaries. However, we assume that
for each target region there is at least one seed that is fully
contained within (this implicitly imposes a lower bound on
the size of the regions we are willing to consider).

The seeds that fall all within a target region will be, by
definition, on a flat portion of the residual surface. So, to-
gether with an initial position, we must endow seeds with
an “initial velocity”. This is a direction in the space of
curves, that corresponds to a variation of the initial seed.
The most obvious direction is the one corresponding to an
expansion of the seed which, in the absence of damping,
corresponds to a constant inflationary force. While this is
the simplest choice, more elaborate initial velocities can be
implemented.

Each seed is thus evolved independently, so there is no
interaction among phases, and the algorithm can be run in
parallel for each initialization. Multiple seeds will converge
to the same salient target regions (all seeds that are con-
tained in a target region should converge to the same solu-
tion) while isolated seeds may converge to spurious local
minima. All final regions are put through a voting scheme
to select those with consistent convergence, which yields
the final multi-phase segmentation.

4. Experiments
In the first synthetic example we illustrate the behavior

of our approach depending on the statistics of the data. The
common heuristic of tying the lookout region to the size of
the foreground fails since the probability of detection of dis-
continuities between two regions depends on the statistics
of the images on both sides of the decision boundary, not
on how large these regions are. Tying the lookout region
on each side to the statistics on the other side, on the other
hand, scales nicely with the levels of noise as well as with
the size of the regions (Fig. 3). In the second experiment we
test our generalization of the Chan and Vese model (13) on
the same data of Fig. 1. In Fig. 4, the contour adapts nicely



Figure 3. Synthetic experiment: A number of squares of differ-
ent sizes, with varying intensity gaps from the immediate back-
ground (light) and a randomized far background (dark), with ad-
ditive noise of varying standard deviation. Initialization is ran-
domized within three classes: The entire initial contour is con-
tained within the target square, contains it, or intersects its bound-
ary. Convergence is considered successful when the contour cap-
tures the boundaries of the square, with accuracy measured by the
set-symmetric difference between the “true” and the estimated re-
gions. Failure is declared when the contour evolves to capture the
structure of the background (right), and the percentage of occur-
rences measures the robustness of the algorithm to initialization.
Quantitative results are reported in Figs. 6–8.

based on its local context, regardless of the complexity of
the background far away from it. Note, however, that in
this example many variants of the simple model of [6], for
instance the full M-S model (Fig. 1 bottom-right) gives sat-
isfactory results, albeit at an increased computational cost.
In the third experiment, in Fig. 5, we try a challenging ex-

Figure 4. Heart chambers: Although the C-V model fails (Fig.
1), the full M-S model can successfully detect the boundaries of
the heart chambers, at the cost of expending most of the modeling
efforts on the background (Fig. 1 bottom). Our generalization of
the C-V model (13), on the other hand, only focuses on an outer
neighborhood of the boundary, controlled by the statistics of the
object of interest.

ample where even the general M-S model, as well as the
standard C-V model, fails to detect the boundaries of the
flatworm (left). Our model (13), on the other hand, suc-
cessfully detects it despite the complex background and sig-
nificant variation in the intensity gap along the boundary.
Fig. 4 also highlights the fact that our model allows dealing
with multiple regions in a straightforward way that does not
involve logic combinations of level set functions. A sys-
tematic covering of the image with multiple initializations
yields multiple convergent runs to each region of interest,

Figure 5. Flatworm: The C-V model, as well as the full M-S
model, fail to detect the boundaries of the flatworm. Our model
(13), however, successfully detects it despite the complex back-
ground (right).

Inside Init. Outside Init. In/Out Init.
C-S 1130 (21) 830 (16) 882 (17)

σ = 0 C-V 3440 (53) 2820 (44) 3976 (62)
M-S 1580 (1216) 1140 (877) 1208 (930)
C-S 808 (15) 304 (6) 1062 (20)

σ = 0.01 C-V 1610 (25) 1020 (16) 2900 (45)
M-S 906 (697) 610 (469) 1260 (970)
C-S 888 (17) 551 (10) 1202 (23)

σ = 0.05 C-V 710 (11) 1722 (27) 3480 (54)
M-S 1180 (908) 915 (704) 1670 (1285)
C-S 970 (18) 522 (10) 1470 (28)

σ = 0.1 C-V 730 (11) 1877 (29) 3570 (55)
M-S 1181 (909) 730 (562) 1800 (1386)

Figure 6. Computational Cost: Number of iterations and proces-
sor time per iterations in milliseconds in parenthesis. M-S refers
to the Mumford-Shah model, C-V to the Chan-Vese model, and C-
S to the “Curious Snake” model presented here. The table shows
that our approach is competitive both in terms of number of itera-
tions to reach a specified accuracy, as well as in the computational
cost per iteration. The figures are averaged over 10 trials per each
configuration, with initial condition starting all inside, all outside,
or partially overlapping the target region.

so the two chambers are detected individually.
In order to arrive at a quantitative comparison between

the M-S model, the C-V model, and the model (13), we
consider the experiment in Fig. 3, and vary the size of the
target, the noise level, the gap between the means, and the
initialization, which is randomized within three classes: All
inside the target, all outside, and partially overlapping the
boundary. We measure accuracy by the set-symmetric dif-
ference between the true region Ω and the estimated one Ω̂,
normalized by the area of Ω. We measure robustness by the
percentage of runs that converge to within a 10% accuracy,
starting from each of the three classes of randomized initial
conditions. Finally, we evaluate computational complexity
by measuring the number of iterations necessary to reach
a 1% accuracy, conditioned on convergence, as well as the
computational complexity of each iteration. The results are
summarized in the tables in Figs. 6–8.

In fig. 9 we show a case where multiphase level sets with
different tiling initializations (different box centers and box
lengths) on a simple synthetic image can lead to a correct or



Inside Init. Outside Init. In/Out Init.
C-S 0.0000 0.0000 0.0000

σ = 0 C-V 0.3640 0.3634 0.3990
M-S 0.0000 0.0000 0.0000
C-S 0.0001 0.0005 0.0006

σ = 0.01 C-V 0.3705 0.3804 0.3990
M-S 0.0000 0.0002 0.0008
C-S 0.0004 0.0002 0.0010

σ = 0.05 C-V 0.3742 0.3634 0.4210
M-S 0.0003 0.0002 0.0007
C-S 0.0010 0.0012 0.0043

σ = 0.1 C-V 0.3842 0.3910 0.4337
M-S 0.0015 0.0017 0.0032

Figure 7. Accuracy: The normalized set-symmetric difference be-
tween the estimated region and the contour. Zero means perfect
matching, 1 means that the region is disjoint. The figures are av-
eraged over 10 trials starting from each initial configuration. Our
approach performs nearly as well as M − S, but at a fraction of
the computational cost.

Inside Init. Outside Init. In/Out Init.
C-S 100 100 100

σ = 0 C-V 100 100 100
M-S 100 100 100
C-S 100 100 100

σ = 0.01 C-V 100 90 100
M-S 100 100 100
C-S 90 100 100

σ = 0.05 C-V 80 70 80
M-S 100 100 100
C-S 90 90 90

σ = 0.1 C-V 70 60 70
M-S 90 90 90

Figure 8. Robustness: The percentage of trials where the con-
tour converged to within 10% accuracy (Fig. 7). M-S performs
best, since it relies on a global model. C-V performs the worst;
although, in principle, it relies on an equally universal model
(piecewise constant statistics), limiting the model to two phases
causes significant convergence problems in the presence of com-
plex background clutter.

Figure 9. Non-Interacting Multiphases: Typical multiphase level
set initialization with overlapping zero level sets (left). Depending
on the size and spacing of the regions, multiphase levels sets could
converge to the correct (2nd image) or incorrect (3rd image) solu-
tion even in the case of a noiseless synthetic image. Our algorithm
correctly detects all regions (right).

incorrect segmentation, whereas our automatic initialization
algorithm consistently converges to the correct solution.

In the last experiment (fig. 10), we show that multi-phase
level sets are not robust to generic tiling typically used in
the literature, whereas our algorithm consistently converges

Figure 10. Non-Interacting Multiphases: Phantom brain im-
age used in medical imaging (top left). Our automatic algorithm
(top-middle) correctly detects gray matter/white matter with be-
low 10% error, while 4 phase multiphase fails (top right and bot-
tom left) 40% of the time (error above 10%) and fails 100% of
time (two bottom right) with 8 phases. Initialization for multi-
phase level sets is done with densely placed overlapping boxes of
differing size/spacing.

from generic initialization. We perform the experiment on a
phantom brain image typical in medical imaging where the
goal is to separate white matter from gray matter. We initial-
ize the multiphase algorithm with a dense tiling of squares.
We randomize the initialization by varying the size (3-15
pixels) and spacing (2-5 pixels) of the squares. In 40% of
the cases with 4 phases, the multiphase algorithm correctly
detects the gray/white matter with error (set-symmetric dif-
ference) less than 10%. In the case of 8 phases (3 level sets),
multiphase level sets always fails (error greater than 10%).
Fig. 10 shows a representative sample of failures. Also, if
the number of phases is unknown, one would wish that a
larger number of level set functions would converge to a
solution where all phases are captured and some overlap.
Unfortunately, this does not usually happen. This makes
multi-phase algorithms impractical in real scenarios where
there is no such thing as a “true number of phases” and one
would want a segmentation algorithm to be robust with re-
spect to singular perturbations (changes in the number of
phases).

5. Discussion

We have presented a semi-local region-based segmenta-
tion model that generalizes that of [6] to an adaptive look-
out region. The basic idea is to tie the size of the region
not to the size of the object of interest, but to the fitness of
its model, following a robust-statistical perspective. Our
assumption is that, for each object of interest for which a
statistical model can be easily specified, the detection of its
boundary depends on a violation of this model, a hypothesis
that can be tested locally, with the locality controlled by the
deviation of the data from the model. This affords us the
added benefit of simultaneously detecting multiple objects



in an image, by initializing several regions on a covering of
the image, without having to manage logic combinations of
level set functions [21, 8].

Our results naturally relate to the wealth of research
on active contour models, pioneered by [12, 1], imported
into the framework of geometric variational optimization by
[3]. Contributions that are particularly relevant in the con-
text of our paper include [13, 18, 4, 7], as well as various
“unilateral” region segmentation approaches based on fast-
marching methods [10].

Our implementation neglects some terms of the optimiz-
ing flow, that is therefore only a sub-optimal solution of
(13). Investigating efficient approaches to minimizing the
full energy functional is the subject of future investigation,
along with an empirical characterization of the loss from
optimality in the simplified algorithm we have reported in
Sect. 3.

Our technique is subject to the same limitations of any
region-based active contour model: The model is based on
the first-order optimality conditions, which are only neces-
sary but not sufficient for a global minimum.

Acknowledgments

We wish to acknowledge the following grants: ONR 67F-
1080868/N00014-08-1-0414, ARO 56765-CI and AFOSR
FA9550-09-1-0427.

References
[1] A. Blake and M. Isard. Active contours. Springer, 1998. 8
[2] P. Blomgren and T. Chan. Color TV: total variation methods

for restoration of vector-valuedimages. IEEE Transactions
on Image Processing, 7(3):304–309, 1998. 1

[3] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active con-
tours. In Proceedings of the IEEE Int. Conf. on Computer
Vision, pages 694–699, Cambridge, MA, USA, June 1995. 8

[4] A. Chakraborty, L. Staib, and J. Duncan. Deformable bound-
ary finding in medical images by integrating gradient and re-
gion information. IEEE Transactions on Medical Imaging,
15(6):859–870, 1996. 8

[5] T. Chan and S. Esedoglu. Aspects of Total Variation Regular-
ized L1 Function Approximation. SIAM Journal on Applied
Mathematics, 65(5):1817, 2005. 1

[6] T. Chan and L. Vese. An active contours model without
edges. In Int. Conf. Scale-Space Theories in Computer Vi-
sion, pages 141–151, 1999. 1, 2, 3, 4, 6, 7

[7] G. Charpiat, R. Keriven, J. Pons, and O. Faugeras. Designing
spatially coherent minimizing flows for variational problems
based on active contours. In ICCV, 2005. 8

[8] D. Cremers, N. Sochen, and C. Schnoerr. Towards
recognition-based variational segmentation using shape pri-
ors and dynamic labeling. In Intl. Conf. on Scale-Space The-
ories in Computer Vision, pages 388–400, June 2003. 8

[9] D. Cremers, and S. Soatto. Motion competition: a variational
approach to piecewise parametric motion segmentation. In
Intl. J. on Comp. Vision, pages 249–265, May 2005. 1

[10] R. Goldenberg, R. Kimmel, E. Rivlin, and M. Rudzsky. Fast
geodesic active contours. IEEE Transactions on Image Pro-
cessing, 10(10):1467–1475, 2001. 8

[11] I. Karatzas and S. E. Shreve. Brownian Motion and Stochas-
tic Calculus. Springer, 1988. 2

[12] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: active
contour models. Int. J. of Comp. Vis., 1(4):321–331, 1987. 8

[13] R. Malladi, J. Sethian, and B. Vemuri. Shape modeling with
front propagation: a level set approach. IEEE Trans. on Patt.
Anal. and Mach. Intel., (17):158–175, 1995. 8

[14] J. Mille and L. Cohen. A local normal-based region term for
active contours. EMMCVPR, 2009. 2

[15] D. Mumford and B. Gidas. Stochastic models for generic
images. Quarterly of Appl. Math., 54(1):85–111, 2001. 3

[16] D. Mumford and J. Shah. Optimal approximations by piece-
wise smooth functions and associated variational problems.
Comm. on Pure and Appl. Math., 42:577–685, 1989. 1, 2

[17] S. Osher and J. Sethian. Fronts propagating with curvature-
dependent speed: algorithms based on hamilton-jacobi equa-
tions. J. of Comp. Physics, 79:12–49, 1988. 1, 4

[18] N. Paragios and R. Deriche. Geodesic active regions: a new
paradigm to deal with frame partition problems in computer
vision. International Journal of Visual Communication and
Image Representation, Special Issue on Partial Differential
Equations in Image Processing, Computer Vision and Com-
puter Graphics, 13(2):249–268, June 2002. 8

[19] N. Paragios and R. Deriche. Geodesic active regions and
level set methods for supervised texture segmentation. Inter-
national Journal of Computer Vision, 46(3):223, 2002. 1

[20] M. Rousson, T. Brox, and R. Deriche. Active unsupervised
texture segmentation on a diffusion based feature space.
Tech. rep., INRIA, January 2003. RR n. 4695. 1

[21] B. Sandberg and T. Chan. A logic framework for active con-
tours on multi-channel images. Journal of Visual Communi-
cation and Image Representation, 16(3):333–358, 2005. 8

[22] B. Sandberg, T. Chan, and L. Vese. A level-set and Gabor-
based active contour algorithm for segmenting textured im-
ages. UCLA CAM report, pages 02–39, 2002. 1

[23] A. Tartakovsky and V. Veeravalli. General asymptotic
Bayesian theory of quickest change detection. Theory of
Prob. and Appl., 49(3):458–497, 2005. 2, 3

[24] V. N. Vapnik. The nature of statistical learning theory.
Springer-Verlag New York, Inc., New York, NY, USA, 1995.
2

[25] S. Zhu, T. Lee, and A. Yuille. Region competition: Unifying
snakes, region growing, energy /bayes/mdl for multi-band
image segmentation. In Int. Conf. on Computer Vision, pages
416–423, 1995. 1


