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1. Description of Videos
1. FAR3.mp4, FAR5.mp4, FAR7.mp4 - Sample results of all methods tested on our new dataset. Purple masks

indicate the algorithm’s current best guess of the detection (but this is not necessarily the final output of the algorithm,
which is at detection time). When the video stops (possibly before the end of the video), the masked region (purple or
green) is the algorithm’s detection. The mask in green indicates a correct detection by the algorithm (measured against
ground truth). Although our dataset consists of 78 videos, only a subset are shown (due to limited space).

• FAR3.mp4 - The threshold of ours and other methods are chosen to operate at a false alarm rate of 0.3.

• FAR5.mp4 - The threshold of ours and other methods are chosen to operate at a false alarm rate of 0.5.

• FAR7.mp4 - The threshold of ours and other methods are chosen to operate at a false alarm rate of 0.7.

Higher false alarm rate leads to less delay in our method. On average, the theory indicates that our method should
have less delay than other approaches operating at a fixed false alarm rate. The videos indicate that that is true on most
sequences.

2. LRT.mp4 - Samples of our results shown together with a plot of the likelihood ratio Λt. The four windows show the
detections for different thresholds b indicated. Larger b means longer delay but at fewer false alarms; small b means
smaller delay but more false alarms.

As in the other sequences above, when the video stops, purple or green masks indicate the algorithm’s detection. Purple
masks before the video stops are the algorithm’s best guess of the detection at the current time, but not the final output
of the algorithm. Green indicates a correct detection (verified against ground truth), see the paper for the criterion for
correct detection.

2. Details of Derivations
Below, “Eqn X” refers to equation X in the main paper. (X) indicates a reference to equation X in this supplementary

material.

• Derivation of Eqn 5 and 6
Using Eqn 3 and Eqn 4, we see that ηt(x) = It+1(wt,t+1(x))− It(x) ∼ N (0, ση,i). We see that for points x1, x2, . . .
that are distinct and using the independence of the noise process in space,

p(It:t+1, x1, . . . , xl|vit, Oit, Rit) = p[η, x1, . . . , xl|vit, Oit, Rit] =
∏
l

p[ηt(xl)|vit, Oit, Rit] (1)

=
∏
l

p[It+1(xl + vit(xl))− It(xl)|Oit, Rit]. (2)
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By the statistics of the noise process, we have that

p[It+1(x+ vit(x))− It(x)|Oit, , Rit] ∝

exp
(
− 1

2σ2
η,i
|It+1(x+ vit(x))− It(xl)|2

)
x ∈ Rit\Oit

exp
(
− β

2σ2
η,i

)
x ∈ Oit

.

Since we choose the occlusion to be regions of high residual, i.e.,

Oit =

{
x ∈ Rit :

1

2σ2
η,i

|It+1(x+ vit(x))− It(xl)|2 > β

}
, (3)

we have that

p[It+1(x+ vit(x))− It(x)|Oit, Rit] ∝ exp

{
1

2σ2
η,i

ρ
[
It+1(x+ vit(x))− It(x)

]}
. (4)

where ρ(y) = min{|y|2, β}.
Therefore, substituting (4) into (2), we find that

p(It:t+1, x1, x2, . . . |vit, Rit) ∝ exp

(
−
∑
l

1

2σ2
η,i

ρ
[
It+1(xl + vit(xl))− It(xl)

])
. (5)

Passing to the continuum limit and accounting for the fact that a point x may belong to one of the n regions Rit, we
arrive at

p(It:t+1|vit, Rit) ∝ exp

(
−
n−1∑
i=0

∫
Rit

1

2σ2
η,i

ρ
[
It+1(x+ vit(x))− It(x)

]
dx

)
. (6)

• Derivation of Eqn 7
Using the conditional independence of pairs of adjacent image frames, given the regions and frame-by-frame displace-
ments, we have that

p1(It1:t2 |vit1:t2 ,R
i
t1:t2) =

t2−1∏
t=t1

p1(It:t+1|vit, Rit). (7)

Substituting, (6) into the above, we have that

p1(It1:t2 |vit1:t2 ,R
i
t1:t2) ∝

t2−1∏
t=t1

exp

(
−
n−1∑
i=0

∫
Rit

ρi
[
It+1(x+ vit(x))− It(x)

]
dx

)
(8)

= exp

(
−
t2−1∑
t=t1

n−1∑
i=0

∫
Rit

ρi
[
It+1(x+ vit(x))− It(x)

]
dx

)
. (9)

Now to maximize the quantity above, we may minimize − log p1(It1:t2 |vit1:t2 ,R
i
t1:t2) since − log is a monotone

decreasing function, as is done in Eqn 7 in the paper.

• Derivation of Eqn 10
Define the quantity in Eqn 7 as Q, we can switch the order of summation

Q =

t2∑
t=t1

n−1∑
i=0

∫
Rit

ρi[It+1(wit,t+1(x))− It(x)] dx =

n−1∑
i=0

t2∑
t=t1

∫
Rit

ρi[It+1(wit,t+1(x))− It(x)] dx. (10)
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Given an s ∈ {t1, . . . , t2}, we can perform a change of variables as x = wis,t(y) for the inner integral. We see that
dx = det∇wis,t(y) dy. Then

Q =

n−1∑
i=0

t2∑
t=t1

∫
ws,t(Rit)

ρi[It+1(wit,t+1(wis,t(y)))− It(wis,t(y))] det∇wis,t(y) dy (11)

=

n−1∑
i=0

t2∑
t=t1

∫
Ris

ρi[It+1(wis,t+1(y))− It(wis,t(y))] det∇wis,t(y) dy (12)

=

n−1∑
i=0

∫
Ris

f i(x) dx, (13)

where

f i(x) =

t2∑
t=t1

ρi[It+1(wis,t+1(x))− It(wis,t(x))] det∇wis,t(x). (14)

Note that we have used the fact that wit,t+1 ◦ wis,t = wis,t+1. Note that these maps denote smooth diffeomorphisms so
that the inverse of the map exists and the composition holds. This is because the maps have been extended smoothly
onto the entire domain Ω from their initial definition within the regions.

The functional Q does not take into account the fact that the motion signal across multiple frames could be ambiguous
(in textureless regions in Ris or when all motion residuals are large). This gives rise to the modification seen in Eqn
(10), where the motion is unreliable to estimate. This incorporates color histograms and a prior for smoothness. Note
that the prior for smoothness used is the standard length regularization of the region boundaries:∑

i

∫
∂Ris

ds, (15)

where s is the arclength measure and ∂Ris is the boundary of the region.

• Derivation from Eqn 15 to Eqn 16.
Note that there was a typo in Eqn 15 in the paper. The definition of Λtc,t should read:

Λtc,t =
maxRi

tc:t
,vitc:t

p1[Itc:t|Ri
tc:t,v

i
tc:t, i = 0, . . . , n− 1]

maxv0
tc:t

p0[Itc:t|v0
tc:t]

. (16)

This is because to approximate the unconditional probabilities, we approximate the marginalization by choosing it to
be the maximum value of the probability over the conditioned variables (this is equivalent to choosing a delta function
for the prior probabilities of the conditioned variables).

Since − log is a monotone decreasing function, the maximization problem can be changed to a minimization of the
− log of the quantity being maximized. This leads to

− log Λtc,t = min
Ri
tc:t

,vitc:t

− log p1[Itc:t|Ri
tc:t,v

i
tc:t, i = 0, . . . , n− 1]−min

v0
tc:t

− log p0[Itc:t|v0
tc:t] (17)

Noting that

− log p0[Itc:t|v0
tc:t] =

∫
Ω

ρi
[
It+1(w0

t,t+1(x))− It(x)
]

dx (18)

− log p1[Itc:t|Ri
tc:t,v

i
tc:t, i = 0, . . . , n− 1] =

n−1∑
i=0

∫
Rit

ρi
[
It+1(wit,t+1(x))− It(x)

]
dx, (19)

using (6). Note we have removed the normalization term (to make proper probabilities) for convenience, and this does
not affect the optimizer. Using that

Resit(x) = ρi[It+1(wit,t+1(x))− It(x)] =
1

2σ2
η,i

ρ[It+1(wit,t+1(x))− It(x)], (20)

we arrive at Eqn 16 in the paper.
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• Derivation of Eqn 18
We apply QD to the signal rt = 1

|Ω|
∫

Ω
ResNLt (x) dx. We assume that before tc the distribution isN (µ0, σ) and at and

after it isN (µ1, σ). Since the means are unknown, we estimate them from the data, and by maximizing the likelihood,
we arrive at

µ0 = µ̂1:tc−1 =
1

tc − 1

tc−1∑
s=1

rs (21)

µ1 = µ̂tc:t =
1

t− tc − 1

t∑
s=tc

rs. (22)

QD leads to the following likelihood ratio:

log
p[rs ∼ N (µ1, σ), s = tc, . . . , t]

p[rs ∼ N (µ0, σ), s = tc, . . . , t]
= log p[rs ∼ N (µ1, σ), s = tc, . . . , t]− log p[rs ∼ N (µ0, σ), s = tc, . . . , t]

(23)
(after taking − log of the ratio of the pre- and post-change distributions). The previous expression leads (using inde-
pendence of the rs) to

− 1

2σ2

t∑
s=tc

(rs − µ1)2 +
1

2σ2

t∑
s=tc

(rs − µ0)2 = (µ1 − µ0)
1

2σ2

t∑
s=tc

(2rs − µ1 − µ0) (24)

= (µ1 − µ0)
1

2σ2
(t− tc − 1)[2µ1 − µ1 − µ0] (25)

=
1

2σ2
(t− tc − 1)(µ1 − µ0)2 (26)

=
1

2σ2
(t− tc − 1)(µ̂tc:t − µ̂1:tc−1)2. (27)

Since we only seek to find the maximum value of this with respect to tc, we can ignore the constant factor at the start.
This results in the F-statistic shown in Eqn 18.

3. Extended Discussion
• Speed Analysis: We provide some analysis of run-times of various components of our system. Note that these speeds

are on our initial un-optimized C++ / MatLab implementation, and many speed-ups can be done, as discussed later.

We provide a per-frame analysis of the major costs of our algorithm, Algorithm 3 in the paper on a 640 × 480 spatial
resolution video:

– Line 3: Classic-NL optical flow - 1 min

– Lines 4-7 (F-statistic computation): less than 1 sec

– Lines 8 (warp composition and first test): less than 1 sec

– Line 9 (initialization to motion segmentation, i.e., only the initialization in Algorithm 1): 2 sec (only if condition
in Line 8 passes, otherwise 0 sec)

– Line 9 (full motion segmentation, i.e., full Algorithm 1): 1-2 min, using 12 core parallelization, assuming 50
frames are segmented together (only if condition in Line 8 passes, otherwise 0 sec)

– Line 10 (likelihood computation): 5 sec

We make comments on the main bottlenecks:

– As can be seen above, the main bottleneck is Classic-NL optical flow. We haven’t currently used GPUs, but there
are GPU versions of similar optical flows for which there are real-time implementations on GPUs [2]. There is
also a real-time CPU version with similar results as Classic-NL [1].
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– The other bottleneck is the gradient descent for motion segmentation. It should be noted that if only the initial-
ization to Algorithm 1 is used, and no gradient descent is used, then this portion is no longer a bottleneck. The
main paper demonstrated that without applying the gradient descent (no refinement) that not much performance
degradation in terms of delay and detection is incurred (see Figure 10).
Thus, the motion segmentation gradient descent can be skipped if one is not interested in a highly precise seg-
mentation, leading to a method that takes on the order of a few seconds per frame.
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