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Abstract

We formulate an energy for segmentation that is de-
signed to have preference for segmenting the coarse over
fine structure of the image, without smoothing across
boundaries of regions. The energy is formulated by inte-
grating a continuum of scales from a scale space computed
from the heat equation within regions. We show that the
energy can be optimized without computing a continuum
of scales, but instead from a single scale. This makes the
method computationally efficient in comparison to energies
using a discrete set of scales. We apply our method to tex-
ture and motion segmentation. Experiments on benchmark
datasets show that a continuum of scales leads to better seg-
mentation accuracy over discrete scales and other compet-
ing methods.

1. Introduction

Segmentation of images using low-level cues plays a key
role in computer vision. An image consists of many differ-
ent structures at different scales, and thus the notion of scale
space [24], which consists of blurs of the image at all de-
grees, has been central to computer vision. The need for in-
corporating scale space in segmentation is well-recognized
[40]. Further, there is evidence from human visual studies
(e.g., [18, 35]) that the coarse scale, i.e., from high levels of
blurring, is predominantly processed before the fine scale.
This coarse-to-fine principle has led to many efficient algo-
rithms that are able to capture the coarse structure of the
solution, which is often most important in computer vision.
Therefore, it is natural for segmentation algorithms to use
scale space and operate in a coarse-to-fine fashion.

Existing methods for segmentation that incorporate scale
have either one of the following limitations. First, most seg-
mentation methods (e.g., [0, 25, 2]) based on scale spaces
consider global scale spaces that are computed on the whole
image, which does not capture the fact that there exist mul-
tiple regions of the segmentation at different scales, and this
could lead to the removal and/or displacement of impor-
tant structures in the image, for instance, when large struc-

tures are blurred across small ones, leading to an inaccurate
segmentation. Second, algorithms that use a coarse-to-fine
principle (e.g., [5, 33]) do so sequentially (see Figure 1) so
that the algorithm operates at the coarser scale and then uses
the result to initialize computation at a finer scale. While
this warm start may influence the finer scale result, there is
no guarantee that the coarse structure of the segmentation is
preserved in the final solution.

In this paper, we develop an algorithm that simultane-
ously addresses these two issues. Specifically, we formu-
late a novel multi-region energy for segmentation, which
integrates a continuum of scales from Shape-Tailored Scale
Spaces. These scale spaces are defined within regions of the
segmentation, and thus they prevent removal or displace-
ment of important structures. By integrating over a con-
tinuum of scales of the scale space determined by the heat
equation, we show that this energy has preference to coarse
structure of the data without ignoring the fine structure. We
show that it operates in a parallel coarse-to-fine fashion (see
Figure 1). That is, it is initially dominated by the coarse
structure of the data, then segments finer structure of the
data, while preserving the structure from the coarse-scale
of the data. We provide analytic solutions for the optimiza-
tion of the energy, which leads to a computationally more
efficient method than similar energies integrating discrete
scales. We apply our algorithm to the problem of texture
segmentation, and show our method outperforms discrete
scale spaces and existing state of the art. We also apply
our method to motion segmentation, show the advantage
of the shape-tailored continuum scale space, and show out-
performance against existing state of the art.

1.1. Related Work

Scale space theory [24, 53, 15, 27] has a long and rich
history as a theory for analyzing images, and we only pro-
vide brief highlights. The idea is that an image consists of
structures at various different scales (e.g., a leaf of a tree
exists at a different scale than a forest), and thus to ana-
lyze an image without a-priori knowledge, it is necessary
to consider the image at all scales. This is accomplished
by blurring the image at a continuum of kernel sizes. The



Sequential Coarse-to-Fine

Figure 1. [Top]: Sequential coarse-to-fine methods use the result
of segmentation (red) from the coarse scale to initialize (yellow)
the finer scales, and may lose coarse structure of the coarse seg-
mentation without additional heuristics. Note that the result of seg-
mentation of the coarse scale is the left image in red (the blurred
image is not shown), and towards the right segmentation is done at
finer scales. [Bottom]: Our parallel coarse-to-fine approach con-
siders a continuum of scales all at once and has a coarse-to-fine
property. The evolution is shown from left to right.

most common kernel is a Gaussian, which is known to be
the only scale space satisfying certain axioms such as not
introducing any new features as the image is blurred [29].
Scale space has been used to analyze structures in images
(e.g., [13, 50, 29, 447). This has had wide ranging applica-
tions in stereo and optical flow [3 1], reconstruction [20, 49],
key-point detection in wide-baseline matching [30], design
of descriptors for matching [17], shape matching [7], and
curve evolution [43], among others.

Gaussian scale spaces have also been used in image seg-
mentation most notably in texture segmentation [14, -
6, 25, 42], which occur frequently in natural images [’]
While these methods capture important scale information,
they use a global scale space defined on the entire image,
which does not capture the characteristic scale of features
within regions and blurs across segmentation boundaries.
Anisotropic scale spaces [40, 4] have been applied to re-
duce blurring across boundaries, but this could blur across
regions where edges are not salient. Recently, [23] have
addressed this issue by computing scales locally within the
evolving regions of the segmentation. However, only a dis-
crete number of scales are used and thus the method does
not exhibit coarse-to-fine behavior. Such methods for seg-
mentation have been numerically implemented with vari-
ous optimization methods, including level sets [38], con-
vex methods [4 1, 26], and others [47]. The energy we con-
sider is not convex, and thus we rely on gradient descent on
curves. The energy we consider involves optimization with
partial differential equation (PDE) constraints, and thus we
build on optimization methods from [3, 11].

Coarse-to-fine methods, where coarse representations of
the image or objective function are processed and then finer
aspects of the data are successively revealed, have a long
history in computer vision [5]. In these methods, data or the

objective function is smoothed, and the smoothed problem
is solved. The result is used to initialize the problem with
less smoothing, where finer details of the data are revealed.
The hope is that this finer result retains aspects of coarse so-
lution, while gradually finding finer detail. However, with-
out additional heuristics such as restricting the finer solu-
tion to be around the solution of the coarse problem, there
is no guarantee that coarse structure is preserved when solv-
ing the finer problem. Recently, [33] provided analysis and
derived closed form solutions for the smoothing of the ob-
jective in problems of point cloud matching. Our method
uses a single energy integrating over a continuum of scales
in parallel, rather than a sequential approach where multi-
ple energies from coarse to fine are solved. This guarantees
that the coarse and fine scale aspects of the desired solution
are obtained.

Since we also apply our method to the problem of seg-
menting moving objects in video based on motion, we
highlight some aspects of that literature most relevant to
this work. Methods for motion segmentation are based
on optical flow (e.g., [45]). Piecewise parametric mod-
els for motion of regions in segmentation are used in e.g.,
[52, 10]. Non-parametric warps are used for motion models
(e.g.,[37, 46, 54]). Our goal here is not to estimate mo-
tion, but rather we use existing techniques for motion esti-
mation, and improve the segmentation of regions by merely
replacing a single scale formulation with our novel contin-
uum scale space approach.

2. Continuum Shape-Tailored Energy

In this section, we construct a coarse-scale preferential
energy without blurring across segments. To achieve this,
we introduce a Shape-Tailored Continuum Scale Space. A
Shape-Tailored Scale Space avoids blurring across regions,
and a continuum of scales obtains a coarse-to-fine property.

2.1. Shape-Tailored Heat Scale Space

The Gaussian Scale Space, constructed by smoothing the
image with a Gaussian at a continuum of scales (variances),
can be generalized to be defined within regions (subsets of
the image) of arbitrary shape by using the heat equation
(see Figure 2). The solution to the heat equation defaults
to Gaussian smoothing when the domain is R2. The heat
equation, defined in a region R, is:

8tu( x)=A (,x) r€R, t>0
Vu(t,z) - N = r€OR, t>0 (1
u(0,2) = I(x) r€R

where u : [0,+00) x R — R* denotes the scale space,
R C Q C R? is the domain (or subset) of the image €2, I :
Q — R¥ (k > 1is the number of channels) is the image, OR
denotes the boundary of R, N is the unit outward normal



Figure 2. Shape-tailored scale space (solution of heat equation
within regions with boundary in red) for various times (scales).
Notice the quick diffusion of fine scale structures, and the persis-
tence of coarse structure. The persistence of coarse structure is
important to our coarse-to-fine segmentation scheme.

vector to R, V denotes the vector of partials, A denotes the
Laplacian, 0; denotes the partial derivative with respect to ¢,
and ¢ is the scale parameter parameterizing the scale space.
Increasing ¢ indicates increasing amount of smoothing.

The construction of scale space using the heat equation is
useful for segmentation as it allows us to conveniently com-
pute coarse scales of the data within regions of a segmenta-
tion. If the regions are chosen to be the correct segmenta-
tion, this avoids blurring data across segmentation bound-
aries. However, one does not know the segmentation a-
priori, and thus the regions are simultaneously optimized
with the scale spaces in the optimization problem defined
next.

2.2. Coarse-Scale Preferential Energy

The Gaussian scale space is relevant in defining our
coarse-scale preferential energy as the heat equation re-
moves the fine structure of the image in short time, and
spends more time removing coarse structure (see Figure 2)
[9]. Therefore, a data term integrating the scale space over
the scale parameter of the heat equation gives preference to
segmentations separating the coarse over the fine structure.
We thus propose the following energy for segmentation in-
tegrating over a continuum of scales:

N T
E= Z |ui(t, ) — ai|*w(t) dt dz + Reg(IR;),
i=1 7 Ri/0
(2)

where 7' > 0 is the final time, {R;}}¥, are a collection of
regions forming the segmentation, a; € R* is the average
of u;(t,), and w : RT — R is a function that weights
each scale. It can be shown that a; is independent of ¢.
This energy is the mean-squared error of the image within
the region across all scales. It generalizes common single
scale segmentation models, including piecewise constant
Mumford-Shah (Chan-Vese [51, 34]). Reg denotes usual
curve regularization that will be discussed in the implemen-
tation section, Section 3.3.

To further demonstrate the coarse preference of our en-
ergy, we write the data term of the energy in Fourier domain.
For simplicity, we choose w(t) = 1; other weights lead to a
similar conclusion. Choosing the whole domain as a region,

the data term can be written in Fourier domain as:

Lemma 1 Suppose I : R* — Rand a = [, I(z)dz =
Jg2 u(t, x) dx. Then

/m/hmwywﬁmwz/ﬁﬂwmmﬁmwa
0 R2 R2

where H(w) = m I denotes the Fourier transform, and

w denotes frequency.

The proof can be found in supplementary materials. The
function H decays the high frequency components of I at
a linear rate, thus the energy gives preference to the coarse
image structure. Without integrating over the scale space,
the energy in Fourier domain would result in H = 1, which
has equal preference to coarse and fine structure.

3. Optimization and Scale Weighting

We now derive the optimization scheme for the energy
(2), and propose and analyze weight choices.

3.1. Constrained Optimization Problem

The energy (2) is optimized with respect to the regions.
Since the integrand of the energy depends on the regions
nonlinearly, as the heat equation has a non-linear depen-
dence on the region, the energy is not convex, and thus we
apply gradient descent. In order to compute the gradient,
we formulate the energy minimization as a constrained opti-
mization problem. That is, we treat the minimization of the
energy (2) as defined on both the regions R; and u; with the
constraint that u; satisfies the heat equation (1). This formu-
lation allows us to apply the technique of Lagrange multipli-
ers, which makes computations simpler since the nonlinear
dependence of u; on R; is decoupled.

Since all data terms of the energy in (2) have the same
form, we focus on computing the gradient for any one term.
For convenience in notation, we avoid the subscript ¢ denot-
ing the index of the region. Using Lagrange multipliers, we
formulate the energy as a function of region R, u, and the
Lagrange multiplier A : [0, 7] x R — R* with the constraint
that u satisfies the heat equation:

T
Em%mz/'/ﬂmmm+
Cr
/ / (V- Vu+ Xowu) dedt, (4)
0 R

where f(t,u) = (u — a)*w(t). We have excluded the de-
pendencies on x,t for convenience of notation. We have
also provided a more general form of the squared error with
a general function f of u. The second term comes from
the weak form of the heat equation. Integrating by parts to



move the gradient from A to Vu gives the classical form of
the heat equation in (1). Therefore, the second term in (4)
is indeed obtained by Lagrange multipliers.

We may now compute the gradient for E (4) by deriving
the optimizing conditions in u and \. Details are found in
supplementary materials. Optimizing in A simply results in
the original heat equation constraint, so we compute the op-
timizing condition for u by computing the derivative (vari-
ation) of E with respect to u. This results in a solution for
A as given below:

Lemma 2 (PDE for Lagrange Multiplier \) The La-
grange multiplier \ satisfies the following heat equation
with forcing term, evolving backwards in time:

A, ) + ANt x) = fu(t,u(t,x)) x € R x[0,T]
VA(t,z)- N =0 x € OR x [0,T)
AMNT,z)=0 reR

®)

where f, denotes the partial with respect to the second ar-

gument.
Duhamel’s Principle [12] leads to the following solution:

Lemma 3 (Lagrange Multiplier \) The solution of (5)
can be written as

T
At z) = —/ F(s—t,z;s)ds.
t

where F(-,-;s) : [0,T] x R — R is the solution of the
forward heat equation (1) with zero forcing and initial con-
dition f,(u) evaluated at time s, i.e.,

(6)

OF(t,x;s) — AF(t,z;s) =0 x € Rx[0,T]
VE(t,z;s)- N=0 x € OR x [0,T] .
F(0,2;8) = fu(s,u(s,z)) r€R
(N
In the case that f(t,u) = (u — a)?w(t), \ can be ex-
pressed as

T
At, ) = —2/ (u(2s —t,z) — a)w(s)ds.  (8)

The formula for A in (8) is convenient for particular choices
of the weight w as taking the limit as 7" gets large leads
to the energy gradient being computable without explicitly
computing the scale space u, as shown in the next section.

With the optimizing conditions for u and A of E, we can
now compute the gradient of the energy E with respect to
R in terms of X and w:

Proposition 1 The gradient of E with respect to the bound-
ary OR can be expressed as

T
VaRE:/ [f(u) + VA-Vu+ o] dt- N,  (9)
0

where N is the normal vector to OR.

3.2. Weighting Functions

We now explore possible choices of weights, w. Some
choices of weights may have convenient solutions for the
gradient that does not require computation of the scale-
space u, which makes the computational cost much less
expensive than the generic formula (9). As observed in the
experiments, all have a coarse-to-fine behavior, but each dif-
fers in the extent of this property. Calculations are provided
in supplementary materials.

Exponential With Positive Exponent (ExpPos): We
consider the weight w(t) = e/*(/T)* =111, 1 (t), where
«a > 0 and 1 denotes the indicator function. Here, the
weight increases with scale so that the largest scales be-
tween 0 and T' are weighted the most. We truncate at a fi-
nite T". This is because for large scales, the image is blurred
too much to be used in segmentation, and very large scales
should have either low or zero weight. This weighting ex-
hibits the most coarse-to-fine behavior of any weightings
we consider. Although this is the ideal weighting, to the
best of our knowledge, the gradient (9) cannot be written
in a form that does not require computation of the scale
space. Thus, it is computationally more costly than other
weightings we consider. However, typically T is chosen
small (e.g., T' = 10 for a 256 x 256 image) in comparison
to other weightings, which offers cost savings.

Truncated Uniform Weight (Uniform): We consider
the weight function w(t) = 1jo,7)(t). This uses a uniform
weight on all scales between 0 and 7. Since we want to
avoid very large scales (17" — o0), we choose a finite T'. The
gradient when 7' is large (but still finite) is approximated as

1
VorE - N =~ (up + a)(aT — Ur) + §|VUT|2, (10)

where g is initial condition to the heat equation (original
data), and

r€ER

{UT(I‘) —TAUp(x) = Tug(x) ) (11)
x € OR

VUr-N=0

Ur is the integral of the scale space from 0 to 7" and this
can be approximated as the solution of (11) (see supplemen-
tary). The advantage of (10) is that it does not require ex-
plicit computation of the scale space, and (11) can be solved
efficiently iteratively. Indeed, in gradient descent of R, the
solution for the previous iteration can be used as a warm
start for the next iteration. Analysis of the approximation is
in supplementary.

Exponential With Negative Exponent (ExpNeg): We
consider the weight w(t) = e~ (/) for all t € [0, 00),
where o > 0. A small value of « implies that only the small
scales are relevant. A large value of « includes larger scales,
which is desired. The intuition for using this weighting is
that it includes moderately large scales with non-negligible
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Figure 3. Visualization of Energy Optimization for Various
Scale Weightings. We compare usual segmentation of the native
image scale, a discrete shape-tailored scale space (STLD), Exp-
Pos, Uniform, and ExpNeg weightings for the continuum scale
space. No coarse-to-fine behavior is exhibited for the native image
scale and STLD. The continuum scale spaces give coarse-to-fine
behavior, with ExpPos more so than other weightings.

weight as desired, it disregards very large scales as desired
by having exponentially decaying weight, and it has an ex-
act solution for the gradient that does not require the com-
putation of scale space. One can show that the gradient is

VorE -N = aa(a—|—2u0) —ugUsn + iUg& - %|VU20¢|27

(12)
where Us, solves (11) with T' replaced by 2. Like the
uniform weighting, the gradient yields a form that does not
require the computation of the scale space. An advantage
over the uniform case is that the solution is exact.

3.3. Multi-Region Segmentation

We now present the numerical implementation of the
gradient descent for energy (2), when there are multiple re-
gions. The term involving regularization is discussed later.
Let G;N; be the gradient of the ™ summand of E in (2),
where N; is the outward normal to ;. For instance, G;N;
can be any one of the expressions (9), (10), (12). As shown
in [56], the gradient of the full energy evaluated at a point x
is just the sum of G;N; for all 7 such that x € OR;. For
a point z € OR; N OR;, this yields that the gradient is

To achieve sub-pixel accuracy, we use relaxed indicator
functions ¢; : Q@ — [0,1] fori = 1,..., N to represent

the regions, similar to level set methods [38]. R; is where
¢; is larger than ¢;,j # <. By abuse of notation, denote
by G; the quantity multiplying the normal vector of region
R; in either of (9), (10), (12), which is defined in the entire
region R;. We extend it from R; to D(R;), a small dilation
of R;, by solving for G; in D(R;). The extension beyond
the region is done so that the evolution of ¢; can be defined
around the curve, as in level set methods. Following [38] to
convert a curve to a level set evolution, the update scheme
for ¢; inducing the regions gradient descent is Algorithm 1.

Algorithm 1 Multi-Region Gradient Descent

1: Input: An initialization of ¢;

2: repeat

3: Setregions: R; = {x € Q : i = argmax,;$; ()}
Compute dilations, D(R;), of R;
Compute band pixels B; = D(R;) N D(Q\R;)
Compute G; in B; from (9), (10), or (12)
Update pixels x € D(R;) N D(R;) as follows:

G;(2))|Vei (2)|

Nk

¢7 T (2) = 9] (x) — AT(Gi(x) —
+ AT - eAP] (x).

8: Update all other pixels as
¢7 AT () = 9 (2) + AT - eA¢] (x).

9: Clip between 0 and 1: ¢; = max{0, min{1, ¢;}}.
10: until regions have converged

The update of the ¢; in Line 7 of Algorithm 1 involves
the term A¢], which provides smoothness of the curve.
More sophisticated regularizers (such as length regulariza-
tion) may be used, but we have found this simple regular-
ization sufficient. We choose ¢ = 0.005 in experiments,
and this does not need to be tuned, as it is mainly for induc-
ing regularity for computation of derivatives of ¢. Further,
considering the scale space naturally induces regularity.

4. Application to Motion Segmentation

In this section, we show how the results of the previ-
ous section can be applied to motion segmentation. Motion
segmentation is the problem of segmenting objects and/or
regions with similar motions computed using multiple im-
ages of the object(s). One of the challenges of motion seg-
mentation is that motion is inferred through a sparse set of
measurements (e.g., along image edges or corners), and thus
the motion signal is typically only reliable for segmentation
in sparse locations. By using a scale space formulation of
an energy for motion segmentation, coarse representations
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Figure 4. Motion residuals at a single scale are sparse (left col-
umn), leading to difficulties in using these cues in segmentation
(non-SS). Motion cues at a continuum of scales (SS) provide a
richer signal (2nd column), which improves segmentation. Seg-
mentations (in purple) are shown for a frame (middle two) and a
few frames ahead (right two). Although errors in the non-SS ap-
proach are subtle between frames, they quickly propagate across
frames, compared to our approach.

of the motion signal are integrated and more significantly
impact the segmentation. This property increases the reli-
ability of motion segmentation (Figure 4), and the coarse-
to-fine approach captures the coarse-structure without being
impacted by fine-scale distractions at the outset.

With this motivation, we reformulate the motion seg-
mentation problem with scale space. Let Iy, I; : Q — RF
be two images of a sequence where €2 is the domain of
the image. For a given region R;, we define a mapping
w; : R; — Q C R2, which we call a warp or deformation
that back warps I to Iy. We assume that I and I; are re-
lated through w; by the Brightness Constancy Assumption,
except for occlusions, as in typical works in the optical flow
[45]. Define the energy

N T
Erseg = ;/Ri/o [1—m(z)]|u;(t, z)|?w(t) dt da—
| mla) o pr (To(2) do + Reg(0R,).(13)

where u; is the scale space of the difference of Iy and the
back-warping of I; in the un-occluded region R;\O;:

) (14)

)

U ;5 = Il(wz(x)) — Io(q,‘) x € RZ\Oz
0,7 0 i Oi

and m : Q — [0, 1] is the motion ambiguity function. Note
that the energy in the case m = 0 is equivalent to integrating
over all scales the difference of the scale spaces of I and of
I 1 (defined as I o w; inside R;\O; and I in O;). Note that
I 1 is used rather than I; ow; as the latter does not correspond
to I in the occlusion. This energy requires that the regions
are chosen so that all scales of the images between 0 and T’
match. The motion ambiguity function m indicates whether

the motion at a pixel is reliable for segmentation (1 in a
textureless or occluded region and 0 otherwise).  In case
the motion is ambiguous, local color histograms pr, within
regions are used for grouping. As is typical in optical flow
[45], we set the occlusion to be a threshold of the residual:
0; = {(E €ER,; : \Il(wz(x)) — Io(:L‘)|2 > ﬂ}

The optimization involves iterative alternating updates of
the warps and the regions. To update warps, we use the
method of warp estimation in [55]. To update the regions,
we use the results of the previous section and use the ex-
ponential weight with negative exponent, for computational
efficiency. This yields the gradient of the i data terms in
(13) approximately as

o 1
(1- m)(ZUQ —ulU — §\VU\2) —mlogpr, (Io)| Ni,

15)
where U is the solution of (11) using 7" = 2« and right hand
side ug ;. The gradient descent of E),..4 is then given by
Algorithm 1, choosing G; to be the component of (15) mul-
tiplying INV;. We apply our method frame-by-frame. Then
we propagate the result to the next frame via the computed
warp to warm-start the segmentation in the next frame.

5. Experiments
5.1. Texture Segmentation

Datasets and Methods Compared: We first test our
method on texture segmentation, a task where multiscale in-
formation is important. We test on two datasets used in [23].
The Brodatz Synthetic Dataset has 198 images generated
from textures in Brodatz and random shapes from MPEG
dataset. The second is the Real-World Texture Dataset,
which consists of 256 textured images obtained from pho-
tographs of real-world scenes. We use RGB color chan-
nels and binned oriented gradients at four angles, as the fea-
tures for segmentation. Since the contribution in this paper
is the use of shape-tailored scale spaces at a continuum of
scales, we compare to [23] (STLD), which uses scale space
but only considers a discrete number of scales. For refer-
ence, we include other segmentation methods. We use the
abbreviations ExpPos, Uniform, and ExpNeg for the posi-
tive exponent exponential, uniform, and negative exponent
exponential weights in our method. The methods are all
initialized with a standard box tessellation.

Results on Brodatz: First, we compare on Brodatz with
different weighting schemes introduced in Section 3.2 for
continuum scale spaces against STLD. To compare weight-
ings and not the quality of various approximations, we use
(9) to compute the gradient. Images are 128 x 128 and we
choose a = T' = 10 (corresponding to the max scale used
in STLD) for all weightings. Results are displayed in Ta-
ble 1. All weightings give similar results, and all are signif-
icantly more accurate than STLD. This indicates that using



Brodatz Synthetic Dataset

Contour Region metrics

F-meas. GT-cov. Rand. Index Var. Info.
ODS OIS ODS OIS ODS OIS ODS OIS
ExpPos (ours) | 0.41 0.41 0.80 0.80 0.79 0.79 0.68 0.68
ExpNeg (ours)| 0.39 0.39 0.78 0.78 0.77 0.77 0.68 0.68
Uniform (ours) 0.40 0.40 079  0.79 0.78 0.78 0.68 0.68

STLD 0.33 033 0.71 0.71 0.70  0.70 0.74 0.74
Real-World Texture Dataset
Contour Region metrics

F-meas. GT-cov. Rand. Index
ODS OIS ODS OIS ODS OIS ODS OIS

ExpNeg (ours) | 0.60 0.60 091 091 091 091 045 045

STLD 0.58 0.58 0.87 0.87 0.87 0.87 0.59 0.59
non-STLD 0.17 0.17 0.81 0.81 0.82 0.82 0.77 0.77
mcg [2] 0.51 0.54 0.74 0.82 0.77 0.85 0.80 0.66
gPb[1] 0.50 0.54 0.74 c0.84  0.78 0.86 0.80 0.65
CB [21] 0.48 0.52 0.64 0.70 0.66 0.75 0.89 0.78
SIFT 0.10 0.10 0.55 0.55 0.59 0.59 144 144
Entropy [19] 0.08 0.08 0.74  0.74 0.75 0.75 095 0.95
Hist-5 [36] 0.14 0.14 0.66  0.66 0.70 0.70 1.18 1.18

Hist-10 [36] 0.13 0.13 0.66  0.66 0.70 0.70 1.19 1.19
Chan-Vese [8] 0.14 0.14 0.71  0.71 0.73 0.73 1.04 1.04
LAC [28] 0.09 0.09 0.55 0.55 0.58 0.58 141 141
Global Hist [32] 0.12  0.12 0.65 0.65 0.67 0.67 112 1.12
Table 1. Results on Texture Segmentation Datasets. Algorithms
are evaluated using contour and region metrics. Higher F-measure
for the contour metric, ground truth covering (GT-cov), and rand
index indicate better fit to the ground truth, and lower variation of
information (Var. Info) indicates a better fit to ground truth.

continuum scale space leads to increased performance.

Results on Real-World Texture Images: Since all re-
sults for different weightings are similar, we now use Exp-
Neg for comparison on the Real-World Texture Dataset be-
cause of its speed. Results, in Table 1, for « = 20, show
that the accuracy of the continuum scale space is greater
than discrete scales (STLD). Sample representative visual
results are shown in Figure 5.

Next, we test our approach with different choices of «
using the ExpNeg weighting. We also compare against
STLD in terms of speed and accuracy. Results are shown
in Table 2. Results of STLD show that more than one scale
is necessary, and faster speed by using fewer scales leads to
degradation of the segmentation. Second, results of ExpNeg
show that the results are stable across different parameter
choices for . Finally, a speed comparison is performed be-
tween ExpNeg and STLD. Note that each scale that is used
in STLD requires the solution of a PDE, whereas our ap-
proach of ExpNeg requires only a single PDE. This makes
our continuum scale space approach computationally less
expensive, as confirmed in Table 2. Our approach also re-
quires only a single parameter in contrast to STLD that re-
quires choosing a list of scales.

5.2. Motion Segmentation

Datasets: We test our method on the Freiburg-Berkeley
Motion Segmentation (FBMS-59) [37] dataset. FBMS-59
consists of two sets - training, 29 sequences, and test, 30
sequences. Videos range between 19 and 800 frames, and

images
ke

Dataset. We compare the best two methods (ours) and STLD (us-
ing discrete scale spaces).

STLD Scale Comparison
Contour Region metrics
F-meas. GT-cov. Rand. Index Var. Info.
STLD scales ODS OIS ODS OIS ODS OIS ODS OIS
4 0.56 0.56 0.85 0.85 0.85 0.85 0.63 0.63
20 0.55 0.55 0.84 0.84 0.84 0.84 0.64 0.64
4,8,12,16,20| 0.58 0.58 0.87 0.87 087 087 059 059

ExpNeg Parameter o« Comparison

Contour Region metrics
F-meas. GT-cov. Rand. Index Var. Info.
ODS OIS ODS OIS ODS OIS ODS OIS

0.60 0.60 | 0.90 090 090 0.90 0.46 0.46
0.60 0.60 | 0.90 0.90  0.90 0.90 046 0.46

Speed Comparison

(03
«
«

20 0.60 0.60 091 091 091 091 045 0.45
3
5

method | average iterations | average time
ExpNeg (o = 20) 129 +44 10.3 sec
STLD (scale 4,8,12,16,20) 16 +4.1 83.7 sec

Table 2. Analysis of Scale Parameters and Speed. [Top]: Com-
parison of different scale choices for discrete scale spaces (STLD).
[Middle]: Results for different o in continuum scale space with
ExpNeg weight. [Bottom]: Speed comparison on a single proces-
sor for ExpNeg continuum scale space and STLD.

have multiple objects.

Comparison: To demonstrate the advantage of our con-
tinuum space energy over a corresponding single scale en-
ergy, we compare to [55]. Our approach replaces the sin-
gle scale motion term there with the energy (13). Further,
additional regularization used in [55] is not used, as the



Training set (29 sequences) Test set (30 sequences)
P R F N/65 P R F N/69

[16] 79.17 4755 5942 4 77.11 4299 55.20 5
[37] 81.50 63.23 71.21 16 7491 60.14 66.72 20
[48] 83.00 70.10 76.01 23 77194 59.14 67.25 15
[22] 86.91 71.33 7835 25 87.57 7019 77.92 25
[55] 89.53 70.74 79.03 26 9147 6475 75.82 27

ExpNeg (ours)  93.04 72.68 81.61 29 9594 6554 77.87 28

Table 3. FBMS-59 results. Average precision (P), recall (R), F-
measure (F), and number of objects detected (N) over all se-
quences in training and test datasets. Higher values indicate su-
perior performance. All methods are fully automatic.

Frames for Increasing Time —

non-SS ours non-SS

ours

Figure 6. Sample visual results on representative sequences for
the FBMS-59 dataset (segmented objects in purple and red). The
change of energy to integrate over all scales (our approach) is gen-
erally less sensitive to clutter than using an energy that contains
only one scale (non-SS).

scale-space provides inherent regularization. Since we test
on benchmarks, we also compare to other state-of-the-art
approaches, although our main purpose is to show the im-
provements that occur by merely using our continuum scale
space energy.

Initialization: We initialize each with a segmentation of
optical flow from [45] between frame 1 and 20.

Parameters: Our method with ExpNeg weighting re-
quires one parameter « in (12). We choose it to be o = 20
by selecting it based on a few sequences from the training
set. Other parameters e.g., histogram sizes are chosen based
on [55].

Results on FBMS-59: Figure 6 shows some represen-
tative visual results of our method and the single scale ap-
proach. Table 3 shows quantitative results of the two ap-
proaches, as well as other state-of-the-art methods. Visual
results show our approach generally avoids distracting clut-
ter and thus prevents leakages in comparison to the single
scale approach. In many cases, it also captures more of the
object. Quantitative results show that we improve the F-
measure of [55] by about 2% on both training and test sets,
and that we increase the number of objects detected. We
also have highest F-measure of all competing methods.

Computational cost: The additional processing cost re-
quired for our scale space is small compared with the overall
cost of [55]. Our approach adds about 5 secs per frame (one
core) to the total time on average of about 30 secs per frame
by [55] on a 12-core processor.

6. Conclusion

We have presented a general energy that reformulates
conventional data terms in segmentation problems. This
novel energy incorporates a shape-tailored continuum scale
space. It exhibits two important properties: scales spaces
are defined within regions, so that structures in different
segments are not blurred across boundaries nor displaced,
and a coarse-to-fine property. The latter favors that the
coarse structure of the desired segmentation is obtained
while finer structure becomes successively obtained, with-
out having to rely on heuristics. Our shape-tailored con-
tinuum scale spaces have two main advantages over shape-
tailored discrete scale spaces: they have a coarse-to-fine
property, ignoring distracting fine-scale structure leading
to more accurate solutions, and they have a speed advan-
tage. We have shown application to both texture and motion
segmentation. Experiments on two benchmark datasets in
texture segmentation have shown the importance of shape-
tailored continuum scale spaces with respect to existing
state-of-the-art. Experiments on a motion segmentation
benchmark have shown the importance of multiscale infor-
mation in motion segmentation: a mere integration of the
common motion residual over scale improves results, lead-
ing to a state-of-the-art method.
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