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1 Derivation of Equation (3) to (6) in the Paper

In this section, Eq(x) refers to equation (x) in the paper, while (x) refers to

equation (x) in the supplementary material.

1.1 Eq(3)

We optimize in fi given estimates of the other variables. fi appears only in the

first term of Eapp. Following the notations in the paper,

E =

X

t,i

Z

R̃it

|It(x)� fi(w
�1
it (x))|2 dx (1)
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|It(wit(x))� fi(x)|2Vit(wi(x))Jit(x) dx (2)

Let L =
P

t[|It(wit(x)) � fi(x)|2Vit(wi(x))Jit(x)]. By Euler-Lagrange equa-

tion, the optimizer satisfies
@L
@fi

= 0. Thus
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[(It(wit(x))� fi(x))Vit(wit(x))Jit(x)] = 0 (3)

fi(x) =

P
t It(wit(x))Vit(wit(x))Jit(x)P

t Vit(wit(x))Jit(x)
, x 2 Ri, (4)

1.2 Eq(4) and Eq(5)

Similar to (1), by a change of variables the energy can be defined in each Ri.

Following the notations in the paper,

Eapp =

X

t,i

Z

R̃it
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Z
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�t(x) log pi(It(x)) dx (5)
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[|Ĩt(x)� f̃i(x)|2 � �t(x) log pi(Ĩt(x))]Jit(x)Ṽi(x) dx (6)

From this expression, the problem can be formulated as a region competition

problem, which was described in [1]. Following r@R

R
R f(x)dx = fN , where N
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is the outward normal to @R [1], it is straightforward that the gradient flow at

@Ri is

r@RiEapp

=

X

t

n
[|Ĩit � fi|2 � �t log pi(Ĩit)]� [|Ĩjt � f̃j |2 � �t log pj(Ĩjt)]

o
JitṼiNi (7)

Similarly we can compute the gradient flow of Ereg. Finally by E = Eapp+Ereg

we have Eq(4)

r@RiE =

X

t

"
|Ĩit � fi|2 � |Ĩjt � f̃j |2 � �t log

pi(Ĩit)

pj(Ĩjt)
+ ↵i

#
JitṼiNi + �Ni.

(8)

The compuation of Eq(5) is the same.

1.3 Eq(6)

The derivation of Eq(6) follows the results from [2]. The Sobolev gradient Git =

rwitE with respect to wit is a linear combination of a translation component

avg(Git) and a deformation component G̃it(x), where Git = avg(Git)+↵G̃it and

avg(G̃it) = 0. Consider the only term in the energy function Eq(1) that contains

w:

E =

Z

R̃it

|It(x)� fi(w
�1
it (x))|2 dx. (9)

Note that R̃it = wit(R)\{Ṽi = 1}, where Ṽi = Vit �wit denotes the visibility.

For simplicity of the notation, in this section we omit subscripts and write (9)

as:

E =

Z

w(R)
|I(x)� f̂(x)|2Ṽ (x) dx. (10)

Computing the variation of E with respect to a perturbation h of w yields

dE(w) · h =

Z

@w(R)
[I(x)� f̂(x)]2 · Ñ Ṽ h(x) ds(x)

+

Z

w(R)
rf̂(x) · [I(x)� f̂(x)]T Ṽ h(x) dx. (11)

By defination of functional derivative, dE(w) ·h = hG, hiw, where G = rwE
is the gradient with respect to the Sobolev inner product ha, bi = avg(a)·avg(b)+
↵
R
R ra(x) ·rb(x) dx [2]. For simplicity we eliminate ↵. By integrating by parts,
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dE(w) · h = avg(G) · avg(h) +
Z

w(R)
rG̃ ·rh dx

= avg(G) · avg(h) +
Z

@w(R)
rG̃(x) · Ñh(x) ds(x)

�
Z

w(R)
�G̃(x)h(x) dx. (12)

By comparing (11) and (12), we have

8
><

>:

��G̃(x) = F (x) x 2 w(R)

rG̃(x) · Ñ = |I � f̂ |2Ṽ Ñ x 2 @w(R)

avg(G) = avg(F )

, F = rf̂ [I � f̂ ]T Ṽ . (13)

2 Full Details of Numerical Implementation

2.1 Numerical Implementation of Algorithm

We provide more details of our numerical scheme for the evolution of the flat-

tened regions Ri and the segmentations R̃it. We implement the evolutions of

their boundaries using a standard narrowbanding level set method [3]. Each of

the regions Ri are represented by a level set function �⌧
i and the regions are

related to the level set as R⌧
i = {�⌧

i = 1/2} where ⌧ is the time parameter of the

evolution. Similarly, R̃⌧
it are represented with level sets Vit. The corresponding

level set evolutions are shown in Algorithm 1. Step sizes are chosen to satisfy

the CFL conditions.

3 Extended DAVIS Results

3.1 Video Sample Results

See the provided movie files for representative results on the DAVIS dataset.

3.2 Full Results on Davis 2016 dataset

Tab. 1 presents the per-sequence F-measure on Davis dataset. In 15 / 50 se-

quences our methods achieves the best performance.

3.3 Extended Discussion of Success / Failures

Sequences labeled green are the ones in which the objects are occluded and

split into more than one parts. Our result shows strong performance in these

sequences. Occlusion does not a↵ect the segmentation accuracy since no depth
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Sequence Ours ARP[4] LVO[5] FSEG[6] LMP[7] SFL[8] FST[9] CUT[10] NLC[11]
Bear 0.843 0.894 - 0.869 0.665 - 0.860 - 0.850

Blackswan 0.513 0.912 0.774 0.767 0.594 0.939 0.736 566 0.820
BMX-Bumps 0.791 0.574 - 0.451 0.522 - 0.348 - 0.734
BMX-Trees 0.913 0.678 0.674 0.599 0.657 0.605 0.348 0.505 0.330

Boat 0.550 0.408 - 0.643 0.480 - 0.197 - 0.036
Breakdance 0.513 0.741 0.340 0.419 0.503 0.204 0.411 0.340 0.661

Breakdance-Flare 0.783 0.859 - 0.794 0.850 - 0.694 - 0.808
Bus 0.746 0.586 - 0.563 0.547 - 0.584 - 0.406

Camel 0.882 0.902 0.889 0.835 0.803 0.812 0.590 0.922 0.719
Car-roundabout 0.643 0.621 0.745 0.894 0.637 0.892 0.625 0.547 0.250
Car-Shadow 0.715 0.692 0.945 0.940 0.771 0.937 0.540 0.776 0.546
Car-Turn 0.690 0.763 - 0.912 0.676 - 0.731 - 0.634

Cows 0.859 0.860 0.885 0.816 0.773 0.693 0.681 0.785 0.807
Dance-Jump 0.618 0.602 - 0.463 0.459 - 0.462 - 0.567
Dance-Twirl 0.906 0.797 0.789 0.651 0.594 0.583 0.471 0.715 0.365

Dog 0.729 0.713 0.837 0.864 0.787 0.941 0.659 0.678 0.707
Dog-Agility 0.280 0.266 - 0.569 0.337 - 0.265 - 0.551

Drift-Chicane 0.239 0.889 0.711 0.654 0.771 0.146 0.731 0.710 0.312
Drift-Straight 0.441 0.539 0.721 0.652 0.534 0.827 0.470 0.551 0.385
Drift-Turn 0.283 0.645 - 0.744 0.464 - 0.442 - 0.185
Elephant 0.598 0.660 - 0.659 0.627 - 0.569 - 0.251
Flamingo 0.800 0.838 - 0.812 0.778 - 0.763 - 0.610

Goat 0.447 0.746 0.766 0.799 0.707 0.806 0.400 0.479 0.133
Hike 0.894 0.944 - 0.759 0.891 - 0.918 - 0.943

Hockey 0.877 0.767 - 0.676 0.878 - 0.584 - 0.808
Horsejump-High 0.880 0.882 0.888 0.658 0.882 0.748 0.621 0.690 0.881
Horsejump-Low 0.832 0.781 - 0.717 0.794 - 0.490 - 0.659

Kite-Surf 0.295 0.377 0.523 0.322 0.473 0.397 0.346 0.272 0.448
Kite-Walk 0.679 0.421 - 0.340 0.592 - 0.561 - 0.662

Libby 0.843 0.735 0.819 0.674 0.796 0.824 0.718 0.359 0.748
Lucia 0.935 0.855 - 0.784 0.883 - 0.568 - 0.872

Mallard-Fly 0.323 0.614 - 0.711 0.649 - 0.633 - 0.661
Mallard-Water 0.111 0.491 - 0.756 0.214 - 0.079 - 0.692

Motocross-Bumps 0.819 0.728 - 0.661 0.699 - 0.610 - 0.560
Motocross-Jump 0.513 0.646 0.630 0.504 0.582 0.608 0.453 0.461 0.303

Motorbike 0.743 0.628 - 0.418 0.782 - 0.584 - 0.571
Paragliding 0.949 0.745 - 0.289 0.905 - 0.675 - 0.744

Paragliding-Launch 0.254 0.193 0.221 0.176 0.253 0.187 0.185 0.201 0.243
Parkour 0.485 0.843 0.871 0.779 0.789 0.846 0.478 0.442 0.916
Rhino 0.875 0.823 - 0.760 0.684 - 0.634 - 0.431

Rollerblade 0.945 0.904 - 0.694 0.761 - 0.411 - 0.868
Scotter-Black 0.433 0.587 0.575 0.534 0.563 0.615 0.395 0.434 0.228
Scotter-Gray 0.437 0.567 - 0.531 0.609 - 0.321 - 0.466

Soapbox 0.768 0.766 0.821 0.520 0.709 0.721 0.355 0.597 0.658
Soccerball 0.876 0.855 - 0.867 0.851 - 0.900 - 0.855
Stroller 0.758 0.878 - 0.663 0.561 - 0.558 - 0.874
Surf 0.741 0.906 - 0.823 0.434 - 0.445 - 0.673
Swing 0.830 0.699 - 0.628 0.756 - 0.491 - 0.778
Tennis 0.880 0.843 - 0.764 0.838 - 0.567 - 0.927
Train 0.765 0.879 - 0.570 0.777 - 0.660 - 0.521

Table 1. Per-Sequence F-measure on Davis.
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Algorithm 1 Layered optimization numerical implementation
1: Input: Initialization for the flattened representations Ri, fi
2: repeat // update the flattened representations, warps and segmentations
3: For all i and t, update wit performing gradient descent Eq(6) until convergence

4: For all i, compute fi by Eq(3)

5: For all i, update Ri by one step in negative gradient direction Eq(4):

�⌧+�⌧
i (x) = �⌧

i (x)��⌧

"
X

t

[|Ĩit � fi|2 � |Ĩjt � f̃j |2]JitṼi + �

#
|r�⌧

i (x)|

+ ↵|r�⌧
i (x)|

X

t

div


rV ⌧

it (x)
|rV ⌧

it (x)|

�
Jit

for all x in a narrowband of {�⌧
i = 1/2}

6: For all t, update the Vit by one step in negative gradient direction Eq(5):

V ⌧+�⌧
it (x) = V ⌧

it (x)��⌧
X

t


|It � f̂i|2 � |It � f̂j |2 � �t log

pi(It)
pj(It)

�
|rV ⌧

it (x)|

+ ↵|rV ⌧
it (x)|div


rV ⌧

it (x)
|rV ⌧

it (x)|

�

for all x in a narrowband of {V ⌧
it = 1/2}

7: R̃it = {V ⌧
it = 1/2}, Ri = {�⌧

i = 1/2}
8: until the energy E converges

ordering is required, an advantage of our method. See Fig. 1 for examples of the

segmentation results.

Sequences labeled red are the ones containing strong irregular motion in the

background, which may be caused by dynamic background (e.g water waves) or

unlabeled moving object. Motion segmentation schemes correctly detect this as

motion, but the dataset doesn’t consider these as objects. See Fig. 2 for example

failure cases.

4 Extended MIT Results

Visualized Result on MIT Layer Dataset Fig. 3 presents the visualized re-

sult on MIT Layer Dataset. In most cases layers are correctly recovered including

the ones containing 3D non-planar motion and self-occlusion.
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Fig. 1. Successful cases.

Fig. 2. Failure cases. [Up]: Faulty segmentation results. [Down]: Frame by frame
optical flow. Strong and Irregular motion in the background
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Fig. 3. Results on MIT Layer dataset. For each sequence, the results on three
di↵erent frames are presented.
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