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1. Extended Discussion
This section explores some subtleties and caveats that were not included in the main body for reasons of space limitations:

1. Can regularization be used to determine motion in textureless regions? (L086) By assuming spatial regularity and given
that the region to which the textureless region belongs is known, motion can be assigned. However, in the problem that
we wish to solve, it is not known a-priori to which region the textureless region belongs, and therefore, motion cannot
be reliably assigned to the textureless region. Fig. 2 (in paper) shows a problem with a hypothesis test based on motion
cues assigned in textureless regions.

2. How does minimizing the energy lead to a MLE? (L197) The energy Ewarp comes from the following likelihood func-
tion:
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and taking the minus log of above gives the energy, Ewarp.

3. Are Sobolev warps really diffeomorphisms? (L260) Integrating a smooth (i.e., belonging to a Sobolev space) vector
field produces a diffeomorphism [4]. The Sobolev warp is computed by integrating G

i

, which is smooth within the
region since it is the solution of the Poisson equation, and therefore smooth (i.e., belonging to an H2 Sobolev space)
[5]. Therefore, the Sobolev warp is a diffeomorphism from R

i

to w
i

(R
i

).

The extension defined by solving the Laplace equation gives a continuous vector field on D, which is smooth in a small
thickening of R

i

by setup. By integrating the extended vector field over D as in Eqn. (8)-(9), we obtain a Lipchitz
continuous warp on D whose inverse exists. The resulting warp is a diffeomorphism on a small thickening of R

i

to a
small thickening of w

i

(R
i

), and Lipschitz on the entire domain D.

The extension outside R
i

is needed so that the gradient descent of the energy E
seg

(Eqn. (25)) can be defined via a
competition of regions. It is sufficient to extend the warp to a small thickening of R

i

(via the Sobolev metric on a
small thickening of R

i

rather than the Dirchlet problem) so that the gradient descent of E
seg

can be performed. The
extension to all of D is simply performed for convenience in the implementation: one does not need to keep track of
an evolving front.

4. How are Sobolev warps “parameter independent”? (L287) Algorithm 1 is formulated by the property of the Sobolev
gradient shown in Eqn (5): that neither the translation nor the deformation component depends on ↵. This is because
the PDE in Eqn. (7) is independent of ↵ as is the translation Eqn (6). Taking ↵ ! 1 implies that the warp evolves
according to a translation that is independent of ↵. Thus, Algorithm 1 evolves the warp according to a translation until
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the energy no longer decreases (when the translation is zero). At this point, the full gradient G
i

=

1
↵

˜G
i

is a pure
deformation. Evolving the warp does not depend on ↵ since the factor 1/↵ only changes the speed of evolution and
not the final converged warp. Therefore, it suffices to choose ↵ = 1. After one step of the deformation, the translation
step is repeated, and the whole process is iterated. This results in Algorithm 1 that is independent of ↵ and decreases
the energy E

warp

.

5. What are “forward” and “backward” warps wf

i

, wb

i

? (L385) Note that wf

i

is the warp that maps the region from t to
t+1 (warps back I
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in region i) and wb
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which was a typo in Eqn. (14). Computing wb

i

is done using Algorithm 1, but using I
t�1 and I

t

.

6. How does the Motion ambiguity function (maf) work? (L398) Motion cues are not used in the data cost if maf(x) is
1 and used if 0. The maf is 1 if �(x) is small (x is in a textureless region or is close to a textureless region in another
region), or if the current residuals are all large (in which case the motion is unreliable). The threshold on �(x) is
inversely proportional to r0 since the large balls have more samples and thus noise is expected to be mitigated by the
averaging (in the computation of �(x)) and thus, we have a more stringent criteria since noise is mitigated. Fewer
samples (when the ball size is small) implies that noise effects may not mitigated, and thus we would like a less
stringent criteria.

7. The “complementarity” of motion and appearance cues is used by many prior works. While many approaches use
some kind of combination of appearance and motion, in our approach the two complement each other, in the sense
that one dominates when the other does not. This is unlike general linear combinations where both cues are weighted
independently. We have found this approach to work better than similar ones where cues are weighted independently
(and typically with fixed, not data-dependent weights) in the final energy. See Fig. 1 in this manuscript for additional
experiments.

2. Computational Cost Analysis and Speed-Ups
Our implementation of the proposed algorithm can be greatly improved in terms of computational efficiency: Since 90%

of the processing time is devoted to computation of the warps, our algorithm can benefit from a number of obvious speedups.
These are for the most part customary in the field of numerical PDEs, and would not affect the overall performance of
our proposed algorithm, other than its speed. For these reasons, they have not been implemented, but are listed below for
reference:

1. Solving PDE on Thickened Regions We have implemented our algorithm by solving PDE’s for ˜G and the extension
(Eqn. (7)) on the entire domain D. As discussed in Remark 5, this is unnecessary, and the PDE only needs to be solved
in a small thickening of R

i

, which would speed-up computations, but require more sophisticated coding.

2. Multigrid Solver The PDE in Eqn (7) was performed using conjugate gradient, which has a convergence rate N3/2

where N is the number of pixels in the image. Multigrid solvers have linear convergence rate, significantly speeding
up the computation. Note that although the PDE to be solved is on a irregular domain, there are many methods that
tailor the original multigrid algorithm to such an irregular domain (e.g., see [9] and references therein), and still retain
the speed-ups.

3. Parallelization of Region Warps The warps w
i

of each regions are independent of each other, and each warp computa-
tion can be parallelized. This involves a more sophisticated implementation that is beyond our scope here.

4. Transport PDE Replaced by Semi-Lagrangian Method The transport PDE in Eqn (9) (Line 279) was implemented
with a standard upwinding scheme, which has a limited step size determined by the CFL conditions. Larger time steps
are possible and have proven to lead to significant speed-ups with a semi-Lagrangian method [11, 2, 3] This would lead
to an even more significant speed increase in our method since each iteration involves the solution of a PDE (Eqn. (7)).
By increasing the time step, fewer calls to the PDE solver for Eqn. (7) are needed.

5. Speed-Up of Backward Warp Computation At frame t, the backward warp (see line 385) to t � 1 is re-computed
starting at the identity map. However, from time t � 1, we have already computed the forward warp to t (and its
inverse). We may use these inverses to initialize the backward warp at time t, which would save considerable time.



6. Shape-Similarity Function Updates Currently, after each iteration of lines 9-12 of Algorithm 2, the shape similarity
term S

i

is computed, and since this requires a ball integral at each x, this can be expensive. An easy speed-up is to
only update S

i

only after every 50 iterations or so.

3. Implementation details and discretizations
3.1. Poisson Equation for the Sobolev Gradient

We show how to discretize Eqn (7), the Poisson equation. The discretization of the Laplacian is
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which can now be fed into any iterative solver (e.g., conjugate gradient or multigrid).

3.2. Discretization of the Transport Equation
We now describe the discretization of Eqn. (9) in the Sobolev gradient descent. Let �⌧,0

: D ! R denote the backward
warp at time ⌧ . Then Eqn. (9) is discretized using an up-winding difference scheme as:
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4. Additional Comparison to Direct Combination of Motion and Appearance
We provide more comparison on the examples shown in Fig. 3 in the paper. In particular, we show that our complementary

data term (Eqn. (18)) in which the motion or appearance cues are chosen based on the motion ambiguity function, maf, is
necessary. To this end, we add additional comparison to direct combination of motion and appearance cues in our method,
where the maf is replaced with a constant weight (not spatially varying). See Fig. 1. The result for the optimal constant
weight (the manually tuned weight with best segmentation performance) is shown and compared to using the maf. This
shows that a direct linear combination of motion and appearance cues does not lead to as accurate segmentation as using the
complementary motion and appearance achieved through the maf (our approach).

5. Additional Visual Comparison on FBMS-59
In Fig. 2, we provide additional visual comparison of our results to current state-of-the-art on FBMS-59 to extend Fig. 7

in the paper.

6. Additional Comparisons
We report further comparisons not included in the main paper for reasons of space limitations. We compare our method to

[13] on the dataset introduced there. Note that [13] solves disocclusions with appearance cues and the method only applies
to a single region. We also compare to Adobe After Effects 2013 (based on[1]) as well as [6]. Table 1 shows quantitative
results, and Fig. 3 shows an example result, where disocclusions that have different appearance than the covisible region are
present (e.g., the hand is disoccluded and the covisible region including the shirt sleves have different appearance).



optimal constant weight between motion and appearance cues in the data cost

using the motion ambiguity function in the data cost (our approach)

Figure 1. Rotating around an object. This experiment shows that the motion ambiguity function is necessary. The top rows show the results

when a constant weight (and tuned to achieve the optimal result) is chosen between the motion cues and appearance cues in our data cost,

fi. No weight can be chosen to obtain as accurate results as our method (bottom rows), which uses the motion ambiguity function.

ours [13] [6] Adobe Effects
Library 0.9579 0.9654 0.8926 0.9193
Fish 0.9852 0.9792 0.9239 0.9513
Skater 0.9272 0.9086 0.8884 0.6993
Lady 0.9699 0.9508 0.2986 0.8243
Station 0.9445 0.9216 0.5367 0.8258
Hobbit 0.9807 0.9335 0.7312 0.5884
Marple 0.9217 0.9186 0.6942 0.8013

Table 1. Comparison of methods on a dataset used in [13]. All methods use manual annotation in the first frame. Evaluation in terms of

F-measure (higher is better).

7. Spawning New Regions
We illustrate an additional feature of our algorithm that was not discussed in the paper due to space. We illustrate that new

regions are automatically spawned. This is important since new objects may come into sight or may begin to move after being
stationary (and thus are not detected in the initialization). This is accomplished by adding a case to Step 6 in Algorithm 2 in
the paper. Any part of the disocclusion with all H

i

(x) large, i.e., x 2 D such that max

i

H
i

(x) > ⌧ (where ⌧ is a threshold)
is assigned to a new region. Fig. 4 shows some examples to illustrate this feature of our algorithm.
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image ground truth Lee et al. [8] Grundman et al. [7] Ochs et al. [10] Taylor et al. [12] ours

Figure 2. Additional Visual Results on FBMS-59.

Results of [6]

Results of Adobe After Effects 2013

Results of [13]

Disocclusion with complementary motion and appearance (ours)

Figure 3. Sample visual result in the dataset for Table 1. Notice that only our method is able to accurately capture and classify the

disocclusion of different appearance than the covisible region (the left hand).
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