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Abstract—This work presents a novel real-time algorithm for
runway detection and tracking applied to the automatic takeoff
and landing of Unmanned Aerial Vehicles (UAVs).

The algorithm is based on a combination of segmentation
based region competition and the minimization of a specific
energy function to detect and identify the runway edges from
streaming video data. The resulting video-based runway position
estimates are updated using a Kalman Filter, which can integrate
other sensory information such as position and attitude angle
estimates to allow a more robust tracking of the runway under
turbulence.

We illustrate the performance of the proposed lane detec-
tion and tracking scheme on various experimental UAV flights
conducted by the Saudi Aerospace Research Center (KACST).
Results show an accurate tracking of the runway edges during the
landing phase, under various lighting conditions, and suggest that
such positional estimates would greatly improve the positional
accuracy of the UAV during takeoff and landing phases. The
robustness of the proposed algorithm is further validated using
Hardware in the Loop (HIL) simulations with diverse takeoff and
landing videos generated using a commercial flight simulator.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have recently become
more and more prevalent, enabling tasks that are too dirty,
too dull or too dangerous to be undertaken by manned flying
vehicles. UAVs have for instance been used in surveillance
applications including fire detection [7], event detection [13]
or object tracking [21]. They also play an increasing role in
military operations [9]. one of the main practical challenges
associated with the operation of fixed wing UAVs is to
guarantee a safe takeoff and landing [20], particularly since
UAVs are more sensitive to turbulence than heavier, manned
aircrafts. Automatic takeoff and landing is typically done
using navigation sensors, such as absolute positioning systems
(e.g. GPS), accelerometers, gyrometers and magnetometers.
While the fusion between GPS measurements and inertial
measurement unit-based measurements greatly improve po-
sitional accuracy, the residual positional errors are too large
to allow reliable UAV landings on a practical UAV airstrip.
Positioning accuracy on practical UAV airstrips could be
improved by using enhanced GPS systems systems (such
as differential GPS), though such systems require additional
equipment (reference stations), which is expensive. In contrast,
the ever decreasing cost and ever increasing performance of
cameras make them particularly suitable to this application.
Since UAVs are mainly used for surveillance applications,
the vast majority of UAV flights are conducted during good
weather conditions, during which the visibility is high. In

order to correct for the GPS positioning errors, we propose
a new algorithm leveraging image processing and control
systems theory to detect the runway edges, and use this
information to correct the longitudinal and lateral position of
the UAV during the landing phase. The main objective of the
proposed algorithm is to allow a very robust (under all lighting
conditions or runway configurations) detection and tracking
of the runway edges, to guarantee an accurate landing on
narrow airstrips. Numerous computer vision algorithms have
been proposed to help the navigation of fixed wing and rotary
UAVs. In [5], the authors use morphological image processing
and Hough Transforms (HTs) to identify the horizon and
estimate the attitude of a UAV. The authors of [14] propose a
template matching algorithm to detect and track the position
of a runway. Active methods can also be thought of, for
instance in the article [6], which uses active infrared emitters to
guide the UAV during its landing. In other contexts, computer
vision has been successfully used to detect road lanes (for
autonomous vehicle applications), for instance in [15] where
vehicles are detected using HT and Robert filters. The authors
of [23], use splines curve fitting, HT, canny edge detector, and
vanishing points to estimate the boundary of the road. While
effective, this method is complex and does not run in real time
on commercially available embedded platforms. In article [12]
a Line Segment Detector (LSD) is used to detect the main line
features, and K-means clustering is applied to sort and select
specific lines. The authors of [9] have a different approach,
relying on a Sobel filter and K-means to find the edges of
the road from a fixed surveillance camera. Other approaches
for lane or road detection exist, such as in [17], in which the
authors use Random Sample Consensus (RANSAC) and cubic
spline curve fitting to extract the lane position from a video
stream. A linear parabolic lane tracking system with Kalman
filter is proposed in [11]. On the other hand, many approaches
[2], [3], [16] tend to use convex methods in PDE optimization
to segment the image into /N regions based on global intensity
statistics or local intensity statistics.

To the best of the authors knowledge, no robust runway de-
tection and tracking scheme capable of working under a variety
of lighting conditions and a variety of runway configurations is
currently available. Currently available methods, such as [10])
require the user to specify in advance a very large number of
parameters associated with the current tracking problem, or to
specify in advance which features (for instance landmarks or
shadows [23]) have to be excluded from the tracking problem.
Our objective is to develop such a robust scheme that uses a
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Fig. 1: Canny edge detection results on experimental
landing video image. The upper left subfigure shows the
actual video data, while the upper right, lower left and lower
right subfigures correspond to the outputs of the Canny Edge
detector applied to this image, using the parameters o=1
(upper right), 0=10 (lower left) and 0=20 (lower right), in
which o denotes to the standard deviation of the Gaussian filter
. All these results where fixed to a threshold [0.1-0.4]. As can
one see from these pictures, a small variation of parameters
dramatically affects the features that can be extracted from the
image. Recent edge detectors [1] exhibit similar behavior.

minimal number of assumptions on the shape of the runway,
and robust video detection and tracking methods coupled with
a Kalman Filter which can fuse additional information (such
as gyrometer data) in its prediction step. We illustrate this
sensitivity to model parameters on Figure 1, which shows the
difficulty of robustly selecting the contours of the image that
are relevant to the proposed problem. This figure illustrates the
considerable modification of the output of a Canny detector
(applied to a UAV landing video) due to minor changes in its
parameters.

The rest of the article is organized as follows. Section II
gives a high level overview of the proposed runway detection
and tracking algorithm. The core vision-based feature extrac-
tion algorithm is described in section III, and formulated as
an optimization problem. Section IV introduces the Kalman
Filter formulation of the runway edge detection and tracking
algorithm. We validate in section V the performance of this
algorithm using experimental landing videos obtained by the
Saudi Department of Aerospace. To further illustrate the ro-
bustness of the proposed scheme, we develop an hardware-in-
the-loop (HIL) framework around a commercial flight simula-
tor and the proposed runway tracking algorithm in section VI.
In this section, we show that runway detection and tracking
is achieved in a very wide variety of runway configurations,
lighting conditions and obstacles, without any modification of
the parameters of the algorithm.

II. RUNWAY DETECTION AND TRACKING ALGORITHM
OVERVIEW

We now present the high level overview of the runway
edge detection and tracking algorithm. This algorithm is based
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Fig. 2: Computer vision algorithm diagram.

on the combination of computer vision and classical Kalman
Filtering, which is illustrated in Figure 2 below.

The streaming video data is first converted into a sequence
of frames, which are downsampled (both in the color space
and spatially). The regions of interest (ROI) of the image
(containing the runway) is detected at this step. Once the ROI
is identified, the edges of the runway are detected through
computer vision techniques detailed in section III. The edge
location estimates are then fed to a Kalman Filter, which
can fuse additional data (if available) to estimate the runway
location. Then runway edges are then displayed on the real-
time video, or can be used to feed the UAV autopilot (the
location of the runway with respect to the UAV can be
computed modulo a conversion of the video image coordinates
to absolute coordinates).

We now describe the core image processing algorithm.

III. RUNWAY DETECTION AND TRACKING ALGORITHM
STRUCTURE

In this section, we formulate a model for aerial images
containing a runway. We then use the model to formulate an
optimization problem to detect and segment the runway given
an image. We then derive optimization methods for the energy.
Our key innovations are a model and optimization methods
that are specifically designed to lead to efficient computational
algorithms that can be implemented on embedded platforms
on off-the-shelf UAVs. Further, the algorithms are designed to
be robust to background clutter, illumination conditions (e.g.,
day and night), and noise - all important visual nuisances that
are prevalent in aerial imagery.

A. Model and Optimization Problem

Our model for a runway is two line segments, one for
each edge of the runway. Typical runways are flat enough
to be approximated as two parallel straight lines, which
due to perspective projection may appear non-parallel in the



Fig. 3: Runway Model. The runway edges are straight line
segments such that the corresponding regions R and R,
have maximally different image statistics. The other labeled
quantities are lengths used through the manuscript.

image. Although runways may consist of multiple intersecting
runways, in which case the two line segment assumption may
fail, we wish to detect the runway localized to a certain region
below the aircraft, where the two lane segment assumption
is largely true. The advantage of such a model is that the
model of the runway is finite dimensional and leads to fast
algorithms. Our model of the image is that it consists of
two segments (the runway), and that for each line segment,
a neighborhood region on each side of the segment consists
of maximally different image intensity statistics. See Figure 3.
We make no assumptions on the rest of the image (e.g., the
background and the interior of the runway) as the images may
vary significantly in this region depending on the environment.

For simplicity, we assume that the aircraft is approximately
aligned to the runway, which is true in our application since
the navigation system based on GPS is able to position the
aircraft within a few meters (typically less than 15 meters),
and an heading uncertainty of a few degrees (typically less
than 10 degrees). In this case, within a rectangle around the
runway, we may assume that each line segment (representing
the runway) intersects the top and bottom of the rectangle. The
rectangle corresponds to the approximate localization of the
runway within the image. Therefore, the line segments may
be specified by four distances d;, i« = 1,...,4 between the
corners of the rectangle and the endpoints of the line segments.
See Figure 3.

We now formulate an optimization problem defined on line
segments (specified by d;) such that the minimizer corresponds
to the line segments that are aligned with the edges of
the runway. As noted earlier, the runway is such that the
neighboring regions on either side of the line segments have
maximally differing image intensity statistics. For simplicity,
we assume that the statistics is the mean RGB values with
the neighborhoods, but any other statistics may be used (e.g.,
intensity histograms, statistics of filter bank responses, etc).
Let the image be denoted by I : Q@ — R* (k = 3 for
RGB) where Q@ C R?, and let R,R¢ C € denote the
inside and outside neighborhood regions of the line segments,
respectively. See Figure 3. The mean statistics u,v € R¥ for

the inside and outside neighborhoods are then

1 / 1
u=-— [ I(x)dA, v=
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where |R| denotes the area of R, and dA is the area element.
Since we would like the line segments positioned so that u
and v are maximally different, we define the following energy
to be minimized:

I(z)dA, (1)

1
E(dlad27d37d4):_§|u_vl2' (2)

Note that v and v are functions of the position of the line
segments since R and R depend on the line segments, which
are in turn specified by d;. Therefore, the energy E is a
function of d;.

As we will see, the use of region statistics in the design
of the energy leads to a robust runway detection algorithm.
Local derivatives, which are widely used in edge detection, are
sensitive to noise and extraneous features in the images. Thus
using statistics that are more robust to such disturbances will
lead to an algorithm that is less sensitive to irrelevant image
features. The larger the neighborhoods, R and R€, the more
robust the statistics are to local disturbances. However, larger
neighborhoods encompass more of the background where our
assumptions of maximally differing statistics of v and v may
not hold due to irrelevant clutter. This tradeoff in size is
important and will be analyzed in the subsequent sections.

The energy above is related to a large body of literature
in image segmentation by partial differential equations based
methods [8], [18], [19] in which the energies are defined on
the set of (infinite dimensional) regions. The energy is most
closely related to [24], where the objective is to divide the
image into two disjoint regions that have maximally different
intensity means. Our energy formulation has two major mod-
ifications with respect to previously used formulations: first,
the energy is defined on a simplified representation of regions
defined by line segments to support real-time applications
needed for the UAV and second, the use of neighborhoods
rather than the entire image to avoid background clutter typical
in aerial imagery. One problem with the methods of image seg-
mentation using partial differential equations is they typically
rely on local descent methods because the energies are non-
convex (as is our energy of interest). Therefore, they require
the user to design an initialization algorithm. Our model of
the runway is designed to achieve a computationally tractable
real-time detection algorithm that localizes the runway. This
supports a fully automatic real-time runway detection and
segmentation algorithm, a key advance with respect to existing
image segmentation methods, and the key computer vision
innovation in our method.

In the next subsections, we describe an automatic detection
algorithm that roughly localizes the runway by approximating
an optimizer of F, and then we present an optimization
scheme that refines the detection to achieve a more accurate
localization of the runway.



B. Detection Method

The optimization of E directly by evaluating E for every
d; (or a sampling of the space) would be computationally
prohibitive, certainly prohibitive for real-time applications.
Moreover, without an initialization near the desired runway,
local optimization techniques, which are the only candidates
for optimization of E due to non-convexity, would fail to
capture the runway. Therefore, in this section, we construct a
coarse-to-fine algorithm that searches efficiently over the space
of d;. The algorithm prunes away irrelevant line segments in
the search space of d; and proposes a few candidate segments
as segments corresponding to the runway. The energy of these
few candidates can then be evaluated, and the energetically
most favorable candidate can be selected. This leads to a real-
time fully automatic algorithm that is also robust to clutter.

First, to efficiently propose candidate pairs of line segments,
we decouple the pair and focus on generating single line
segments as candidates. Pairs of line segments corresponding
to candidates of the runway will be proposed from the single
line segment candidates and will be described later in this sub-
section. Thus, our algorithm initially searches for candidate
line segments representing any edge of the runway. This is
accomplished by representing a line segment by an angle 6
(# € [-m/2,7/2), which corresponds to the angle of the
line segment with respect to the y—axis, and a location x (z-
coordinate of the center of the line segment). Our algorithm
efficiently computes minimizers of

B(r,6) = 00,0 - 0@ 02 O

where v’ and v’ are the mean values of the image in the
neighborhoods on either side of the line segment specified
by z, 6.

Evaluating E’ for all z,0 is still too computationally
prohibitive, and thus we introduce a hierarchical coarse-to-
fine search. Instead of computing u’, v’ for each 6, i.e., the
mean intensity on either side of a slanted line segment, we
design a scheme whereby the energy E’ is low provided
there is some 6 € [—m/2,7/2) for which E’ is low, and
only a single computation of means is required (rather than
computation of means for all §). A diagram illustrating the
neighborhoods (called r,r_) of the line segment, in which
u',v’ are computed, for various # is shown in Figure 4.
Consider the intersection of the neighborhoods 7 and r_
for each 6 between some range of angles |#| < 7/2. The
intersected regions are shown in the bottom right in Figure 4.
Note that F’ is low for some angle 6 when the difference of
means in the intersections of r; and the intersections of r_
is large. We call the difference of means in the intersected
regions squared the response R, which is a function of the
location .

The candidate locations of line segments corresponding to
edges of the runway are local maxima of R with the highest
responses. Note that since the intersection of regions r has
fewer pixels than any particular r, for a fixed angle, the
means are more susceptible to noise, and therefore, computing

Fig. 4: Edge detectors for various orientations. The lower right
regions is the intersection of all 7+ and r_ within a specified
range [—0,,,0,,); it is able to detect lines with any orientation
without searching within the range.
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Fig. 5: Energy profile and candidate lines.
profile for the image between the green lines. Middle: Red
lines are chosen among the candidate edges based on the
correlation matrix. Right: Red lines are edges with correct
orientation.
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local minima may generate false positives. However, these
false positives are pruned out in the next step. Clearly, false
positives are the cost for efficiency, i.e., avoiding the search
over all # at all locations. Since locating local maxima of R
gives only candidate locations, the energy E’ is computed at
multiple 6 (we choose 0 € {—n/4,—7/8,0,7/8,7/4}) only
at the local maxima locations. This gives approximations for
the orientation of the line segments. We have thus avoided an
expensive search over two variables (x, ) and only a search
over z to find local minima of R is needed with this procedure.
Fortunately, computation R for all z is efficient enough to be
implemented in real-time. This procedure gives candidates for

line segments of the runway, (z;,0;), 4 =1,..., N where N
is chosen small (in our experiments, N = 5). This is illustrated
in Figure 5.

We now compute the energy E for pairs of line segments
in the candidate list (z;,0;). The pair with the lowest energy
is selected as the detected runway. The energy E is thus
evaluated N? times. Since IV is small, this is a considerable
time savings compared with evaluating F at all d;. In fact,
we demonstrate in the experiments that our entire detection
method is real-time. The right image in Figure 5 shows an
example result of the final minimum energy line segment pair.

The algorithm for this detection procedure is summarized
in Algorithm 1.

1) for each z € {0,1,...,L; — 1}
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Fig. 6: True positive rate in function of the scale. This figure
shows that the true positive edge detection rate is high on a
wide range of scales, which illustrate the robustness of the
method with respect to the scale parameter.

« compute u and v with regions defined by the mask
in Fig. 4 (bottom, right) and centered at (x, Ly/2)

for = 7 /4
—(u—v)?/2

o compute R(x) =

2) compute the local minima of R, called z;,2 =1,..., N

3) compute the § € {—n/4,—7/8,0,7/8,7/4} corre-
sponding to x; that minimizes F fort =1,..., N

4) compute F for all pairs of line segments determined by
(z4,0;)

5) output the pair of line segments (x;,y;), (z;,y;) that
have minimum E

C. Local Optimization for Refined Segmentation

We now derive a local optimization method for E given
an initialization close to the desired runway. This step is
needed for two reasons. First, the detection procedure in the
previous section only gives a coarse approximation of the
runway, which needs to be refined. Second, the algorithm
will be used to track the runway in a video, and thus the
lane is already roughly localized (using the result from the
previous frame), and the line segments only need to be slightly
refined. Local optimization is computationally fast, and less
costly than running the global detection procedure described in
the previous section. Therefore, we present a gradient descent
method to optimize F.

One may interpret the energy E as defined on a closed
contour, i.e., a trapezoid formed by the line segments. The
advantage of this interpretation is that, we may use results in
the PDE image segmentation literature [8], [18], [19], which
have derived methods for optimizing arbitrary energies defined
on closed contours that are allowed to deform in arbitrary
ways that may change shape. However, in optimizing E, we
would like to enforce the constraint that the trapezoid remains
a trapezoid. Fortunately, such a constraint can be enforced
by restricting the deformations of the contour to trapezoid
preserving deformations [22].

We summarize the computation of the gradient of &/, VE =
(OE/dd;)}_,, in the proposition below. As seen below, each

partial derivative in the gradient can be efficiently computed
by a line integral of the line segments.

Proposition 1. The gradient of E is given by VE =
(OE/0d;)}_, where the partial derivatives are given by:

g—dEl:Lz(vfu) |R/ I(CpL,(t)) —u)dt
+|R0/ GL1(>>v)dt] @)
%g:Lﬂv—m |R/ I(Cy, (1)) — w)dt
+ / 1(Cy, (1) —v)dt], 5)
o = La(o - u) |m/ (U(Cra(t) =yt

o 1(Cra(t)) - v)dt] L©

% = La(v—u) LR/ t(I(Cr,(t)) —u)dt

CLz U)dt:| ) (7)

Wﬂ
where Cy, is the arc-parameterization of the i line segment
corresponding to (dy,...,dy), Lo is the image width, and u
and v are the means inside the regions R and R, respectively.

The interested reader may find the derivation of the expres-
sions in Appendix A.

The gradient descent algorithm to minimize this energy is
then given by

diey1 = dy, — AVE(dy), (8)

where Jk is the vector of d;s at each iteration of the gradient
descent, and At = 0.5/|VE(dy)| is the time step size.
Note that Jg, the initialization, is the result of the detection
described in the previous section at the beginning of the video.
For subsequent frames, it is the prediction from the previous
frame (see next section for details).

IV. TRACKING

We use Kalman filtering (KF) [4] to predict and the initial
location of the lines before they are processed by the gradient
descent, and then to arrive at a final estimate. This allows
us to process fewer frames, since we may predict ahead
a few frames, and increase the computational speed of the
runway detection algorithm, to enable this process to run in
real time. Moreover, Kalman Filtering increases the robustness
against clutter and outliers that are in the field of view
of the camera. Finally, it can also be used to fuse inertial
measurement data (such as rotation rates measured by the
onboard gyrometers) to enable video-inertial data fusion. We
assume a constant velocity plus noise model, which gives a
first order approximation to the dynamics of the line segments



seen through the camera. We define the state space Xj to
include the vector Jk and their velocities, which makes X, an
8-dimensional vector. We assume the measurement y;, € R* is
a noisy measurement of the first components of X, (Jk), and
these measurements will be obtained by the converged result
of the gradient descent, described in the previous section, with
initialization the predicted relevant part of the state.

The dynamical system of interest can be defined as follows:

Xy = (dF,70)T e R® )

Xiy1 = AXy + Bug + G (10)
Y1 = O Xp + i (11)
G ~ N(0,Q) (12)
. ~N(0,U) (13)

where ¥, _is the velocity corresponding to the horizontal
distances dj, S is the measurement noise covariance matrix,
and U the process (or model) noise covariance matrix. In our
specific problem (constant velocity plus noise), these matrices
are defined as follows !:

lid4><4 idgxs
A =

idgx4

] , B=0, C= [id4><4 04><4} (14)
O4x4

O4x4

O4><4 15
0.01Xid4><4 ’ ( )

U— |:0.01 X i‘-‘14><4:| Q= [O4><4

Note that X is chosen to be the output of the detection
procedure, and zero velocity.

The Kalman Filter involves two steps: prediction and es-
timation. We use the “hat” notation to denote predicted and
estimated quantities.

1) Prediction:

Xijhor = AXp 11, (16)

and the predicted estimated covariance:

Pyjr—1 = APy 31 AT +Q (17)

2) Estimation:
¢ Measurement error/innovation covariance:

S=HPH" +U (18)

o Optimal Kalman Gain:

K =PH"S™! (19)

« Updated state estimate:

Xiie = Xipeor1 + Ky — CXgp1)  (20)

where yj, is obtained by running gradient descent
(8) with initialization the first four components of
Xijk—1-

n this section, we do not assume to have any available inertial or positional
measurements. Such measurements could be used to modify the prediction
step of the Kalman Filter (for instance the rotation rates could be used in the
prediction step to recompute the predicted runway edge locations, enabling a
more accurate and robust tracking).

Fig. 7: Visualization of the Kalman Filter performance
in tracking the runway edges. We consider on this picture
four consecutive time steps (Left to right, and up to down).
Blue line: predicted runway edge locations (from previous
step). Green line: runway edge locations (measurements) using
vision based segmentation (outlined in section III of the
present article). Red lines: estimation (output of the Kalman
filter).

« Updated estimate covariance:

Py = Pyjp—1 — KHPyp—1 (21)

where Py is the state variance matrix which can be
initialized with zeros.

Figure 7 shows an example of the filtering procedure above.

V. EXPERIMENTAL RESULTS
A. Scale Sensitivity

An important parameter of the runway edge detection and
tracking algorithm presented in this article is the scale pa-
rameter. Which scale should be used, and how robust would
this choice be to experimental landing conditions? On the two
extremes, a small scale would be too sensitive to image noise,
while a large scale may be unable to capture the location
of the runway. If no altitude or positional information is
available to the UAV, the scale of the runway (on the image)
is unknown. If this information is available, one can specify
the approximate scale of the runway, which would facilitate
the detection of the runway. The area of the neighborhood
included in the statistical analysis presented in section III is
also another difficulty, since increasing this area could lead to
the inclusion of outliers or clutter located around the edges
of the runway. This could lead to another line being falsely
detected as a runway edge (false positive), which is unde-
sirable. We ran multiple experiments over ten representative
frames including different views of the lane. Accordingly,
there should be a scale by which we can detect the edges
easily and accurately and choose it to be part of the lane
correctly. This is considered as true positive result. Running an
experiment, over ten representative frames of different views
of the lane with some clutters in the surrounding over a scale



Fig. 8: Output of the runway detection algorithm. This
figure shows the detection output for different views for one
video sequence.

range S € [10,15,..,75,80], and 6§ = 45°), gave us a good
indicator on how we can choose the scale of the filter. Hence,
the detection process is very sensitive to the scale. Figure 6
shows that the best scale is S = 40. On the other hand, S = 60
gave the same results, however, it is considered to be big scale.
Figure 6 shows the true positive rate (TPR) as a function of
the chosen scale.

B. Experimental validation

We evaluated the efficiency of our algorithm over video
samples downloaded from a UAV onboard camera filming
landing procedures from different altitudes, positions, and
circumstances. These samples obtained using Saker 4, which is
one of the medium range UAVs that that has been developed by
King Abdulaziz City for Science and Technology (KACST).
tested video has a frame resolution of 1920x1080 pixels. The
algorithm achieves an average speed of 30 frames per second
on this high resolution video. The code shows promising
results to detect the runway. It is accurate, simple, efficient
and supporting real time application. Moreover, to check the
robustness of our code. We applied it under deferent brightness
conditions using day and evening video samples.

C. Detection Results

Figure 8 shows the output of sample detection results on
set out of 20 images of the runway taken at different lighting
conditions and multiple views of the runway. The results show
that our detection algorithm is able to correctly detect the lane
in 90% of the cases, and is thus robust to UAV position and
lighting conditions. All detection results were obtained with a
fixed scale parameter of S = 40 (determined empirically from
a training set not used in the evaluation).

D. Segmentation Results

The gradient descent evolution is depicted for different types
of initialization in Figure 11. This shows how robustly the

”

Fig. 9: Saker 4 UAV. This UAV has a maximum takeoff weight
of 25 kg and can carry a payload of 5 kg. Its wingspan is 3.75
meters and can fly at maximum speed of 120 kms per hour,
and a maximal altitude of 5,000 meters.

segmentation algorithm can converge towards the runway for
any type of initialization around the it.
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Fig. 10: Hardware in the Loop simulation system.

E. Tracking Results

Figure 12 and Figure 13 show how the lane is tracked under
different light conditions by which robustness is proved. The
red lines show the estimated location of the runway using KF
over a sequence of images.

initialization iteration 10 iteration 20 iteration 30

Fig. 11: GD evolution for different initializations with all
possible types of initialization. From the top row to the
bottom: outer lines, inner lines, right shift, and left shift,
respectively, are the different initializations.



VI. HARDWARE IN THE LOOP SIMULATION

Hardware in the Loop (HIL) consists in interfacing a
simulator (presently a flight simulator) to a sensing and control
system (presently the navigation and control system of a UAV)
to evaluate its performance under simulated reality conditions.

In the present case, our HIL framework consists in the
following. The X-Plane flight simulator simulates the view
that a UAV in a landing phase would see, and feeds this
video data to an embedded computer (in the present case a
TI Beagle Board). The embedded computer has a ARM
processor operating at IGHz, and 512MB of DDR3 RAM.
This computer receives the video data through a HDMI cable
(though in reality the video would be acquired by a high
resolution video camera), and processes this streaming data
using the methods outlined in section III. The resulting edge
estimates are sent to an autopilot (currently a Pixhawk
autopilot from 3D robotics), which fuses this information
with positional and inertial measurements (if available) using
the Kalman Filter outlined in section IV.

We validated the robustness of the algorithm on various
video sequences generated by the X-Plane flight simulator.
Examples of runway detections in various environmental con-
ditions are illustrated in Figure 14 below.

VII. CONCLUSION

We have presented a robust, fully automatic and real-time
runway detection and tracking algorithm for UAV landing
applications. Unlike recent approaches to runway detection
using computer vision, our approach requires no rendered
computer model of the shape and appearance of the runway.
This is particularly advantageous since such rendered models
are only applicable to a pre-defined runway geometry and
under specific lighting and weather conditions. Generating
rendered computer models under all possible illumination /
weather conditions and runway geometries is not scalable to
the wide range of conditions that are observed on a UAV
(even under a pre-defined runway). Our approach uses a simple
model of the local geometry of the runway and makes no
assumption on the appearance of the runway other than dissim-
ilarity to the immediate background. These simple assumptions
are more widely applicable to general runways than a specific
rendered model, and thus our approach is scalable to realistic
conditions encountered by the UAV. We have demonstrated
a new model for runways, created an associated optimization
problem for the runway, created a robust and efficient coarse-
to-fine detection algorithm to localize the runway, and we
derived a local optimization approach to refine the results of
detection and is used in tracking. The algorithms have been
demonstrated experimentally to be robust to a wide range of
lighting conditions and varied runways, and shown to be real-
time.
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APPENDIX A
COMPUTATION OF THE GRADIENT OF F

In this section, we show the details for the computation of
the gradient of E with respect to d = (dy,ds2,ds,ds). Using
the Chain Rule, we see that

- = = -

VE() = —(u(d) — o(d)(Vu(d) — Vo(d), (22)

where V deontes the gradient with respect to d.
It remains to compute the gradient of v and v with respect
to d, which are defined by

= JpI(x)dA Jpe I(x)dA
u(d) = B0 () = e

where R is the banded region inside the trapezoid determined
by d, Re is the banded region outside the trapezoid determined
by d, and dA is the area differential element. To compute the
gradient, we may use the result [25] which states that the
directional derivative of a functional

e(R) = /R F(z)dA

(23)

is given by

de(R) - h = f(z)ds
OR

where h is a perturbation of the boundary of R, OR is the
boundary of R that is allowed to vary, ds is the arclength
differential element, and de(R) - h is the change in e by
perturbing R by a perturbation h (defined on the boundary
of OR). .

By applying the Quotient Rule and the previous result, one
can show that

ou 1

_— = I —uw)h;.Nds

od;  |R| cL,L,( s o
ov 1
_— = —— I —v)h;.Nds
od, ~ TR Jo, T

where Cy, : [0,1] — R? is the line segment corresponding to
either side (right or left) of the trapezoid, /V is the unit outward
normal to Cr, and h; corresponds to the perturbation of C L
when the j vertex is perturbed.

t = 1,2, and ¢ = 3,4 correspond to line segments at the
left side and the right side, respectively. While 5 = 1,2,3,4
correspond to the four variables that should be updated. Note
that

)+ (e i 112
CL,;(t){ (Fo®) + (e it i=3,a &)
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Fig. 12: Video sequence 1 showing the tracking output.
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Fig. 13: Video sequence 2 shows the tracking output
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Fig. 14: Video sequences from Xplane under different illumination. Every two rows correspond to one environment

Since N is the outward normal to C' L, it can be related to  also that
the tangent 7" to Cr,; by N = JT', where J cl ()
T(t) :

J= [O _117 @7 i o, 0 -

1 0

) ) o ] where ‘C}J(t)‘ is the speed of the point, s denotes the arc
is the rotation matrix with 8 = —90° counter clockwise. Note ’



length parameter,
ds = ‘C’LJ_ (t)‘ dt, (29)

and Lj; will denote the length of C',. Combining equations
(25), (26), (28) and (29) results in

N(t).h(t)ds = La(t — 1)dt. (30)

Then, the gradient direction at vertex j = 3, for example, can
be derived as follows

OF
= I —
((C —wv)dt
|RC‘ L2( )) 'U) ]
€29
The same argument applies to the other d;, and thus
oF
— = La(v — —u)dt

+|R°|/ (tl)(I(C’Ll(t))’u)dt} (32)
%:LQ(U—'LL) |R|/ I(Cp, (1)) — u)dt

+ = / I(Cp, (t) — v)dt] , (33)

OF
o = La(v—u) |R|/ 1(Cra(t) — u)dt

1((Cra (1)) — v)dt} ,
(34)

IRCI

1
27E4 = La(v—u) L}lﬂ/ H(I(CLy (1)) — u)dt

|Rc|/ I(CL,( ))v)dt], (35)
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