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Abstract Recently, the Sobolev metric was introduced to
define gradient flows of various geometric active contour en-
ergies. It was shown that the Sobolev metric outperforms the
traditional metric for the same energy in many cases such as
for tracking where the coarse scale changes of the contour
are important. Some interesting properties of Sobolev gra-
dient flows include that they stabilize certain unstable tra-
ditional flows, and the order of the evolution PDEs are re-
duced when compared with traditional gradient flows of the
same energies. In this paper, we explore new possibilities
for active contours made possible by Sobolev metrics. The
Sobolev method allows one to implement new energy-based
active contour models that were not otherwise considered
because the traditional minimizing method render them ill-
posed or numerically infeasible. In particular, we exploit the
stabilizing and the order reducing properties of Sobolev gra-
dients to implement the gradient descent of these new ener-
gies. We give examples of this class of energies, which in-
clude some simple geometric priors and new edge-based en-
ergies. We also show that these energies can be quite useful
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for segmentation and tracking. We also show that the gradi-
ent flows using the traditional metric are either ill-posed or
numerically difficult to implement, and then show that the
flows can be implemented in a stable and numerically feasi-
ble manner using the Sobolev gradient.

Keywords Active contours - Gradient flows - Sobolev
norm - Global flows - Shape optimization - Shape priors -
ll-posed flows

1 Introduction

Active contours (Kass et al. 1987) is a popular technique for
the segmentation problem. Over the years there has been a
progression of active contours derived from edge-based en-
ergies (e.g., Caselles et al. 1993, 1995; Malladi et al. 1995;
Kichenassamy et al. 1995), to region-based energies (e.g.,
Mumford and Shah 1985, 1989; Ronfard 1994; Zhu et al.
1995; Yezzi et al. 1999; Paragios and Deriche 2000, 2002;
Chan and Vese 2001), to more recently, prior-based energies
(e.g., Leventon et al. 2000; Tsai et al. 2001; Cremers and
Schnorr 2001; Chen et al. 2002; Rousson and Paragios 2002;
Cremers and Soatto 2003; Raviv et al. 2004) and energies
incorporating complex geometrical information (e.g., Kim
et al. 2002; Rochery et al. 2003; Nain et al. 2004; Sun-
daramoorthi and Yezzi 2005; Guyader and Vese 2007). The
progression from simple to more complicated energies is not
only due to a desire to segment more complicated images,
but it can also be attributed to the traditional gradient descent
technique becoming trapped by (undesirable) local minima
of the energy being optimized. Therefore there have been
efforts to design optimization schemes that can obtain the
global minimum curve or at least a better local minimum of
a generic energy. For example, the minimal path technique
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(Cohen and Kimmel 1996) was designed to find the global
minimal solution of the edge-based energy considered in
Caselles et al. (1995), Kichenassamy et al. (1995). An-
other technique, called graph cuts (Boykov and Jolly 2001;
Kolmogorov and Boykov 2005), was designed for minimiz-
ing discrete approximations to certain active contour ener-
gies.

The limitation of these global methods is that they may be
applied to only certain types of energies, and therefore gradi-
ent descent methods must be used in many cases. Moreover,
for many applications (e.g. object tracking), it is beneficial
to incorporate the information from an initial contour (e.g.
the contour from the previous frame for object tracking) to
find the contour of interest. In such cases, typically for speed
considerations, simple energies are considered for which a
global minimum is not always desired, but rather a local
minimum contour “close” to the initial contour is desired.
For such cases gradient descent methods are ideal. Recently,
Michor and Mumford (2006), Yezzi and Mennucci (2005a,
2005b), Charpiat et al. (2005) have noticed that the gradient
of an energy that is used in descent algorithms depends on
a metric chosen on the space of curves. This fact has been
ignored in previous active contour literature; indeed previ-
ous active contours were always derived from the geometric
L2-type (H°) metric." However, the work of Michor and
Mumford (2006), Yezzi and Mennucci (2005a, 2005b) has
shown that the geometric L>-type metric is not a true Rie-
mannian metric, since the induced distance between curves
is identically zero, and therefore 1.2 is unsuitable for shape
analysis. Accordingly, Sundaramoorthi et al. (2005, 2006),
Charpiat et al. (2005, 2007) have considered new metrics in
the space of curves when deriving descent flows for active
contours since it was shown by the authors that the usual
IL? gradient descent has many undesirable properties. It was
shown that the metric choice affects the path taken to mini-
mize an energy, and that certain local minima of an energy
can be avoided by designing an appropriate metric.

In particular, Sobolev metrics were considered. It was
shown that gradient flows according to Sobolev metrics give
smooth global flows, which avoid many local minima of en-
ergies that trap the usual > gradient flow. We should note
that we are still minimizing the same energy, just with a
different optimization procedure. Thereby, a critical point
or a global minima, remains a critical point or global min-
ima (resp.), these are properties of the energy itself and not
the optimization procedure. The key difference is that the
actual minimizing trajectory depends on the norm used to
compute the gradient. We thereby, with Sobolev norms, ob-
tain different gradients and as such different minimizing tra-
jectories. In addition, it was shown that Sobolev metrics

'In this paper I.? will always refer to the standard geometric inner
product (see Definition 2.2).
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change the notion of “locality” in the space of curves and
therefore make many local minimum, due to noise, in the
space of curves vanish (Sundaramoorthi et al. 2008). In Sun-
daramoorthi et al. (2006, 2008), it was shown that Sobolev
active contours move successively from coarse to finer scale
motions, and therefore the method is suitable for tracking.

Applying Sobolev norms to variational problems has
been done in areas other than active contours to gain many of
the same advantages that are gained in active contour prob-
lems. For example, the book (Neuberger 1997) (see also ref-
erences within) presents the theory of Sobolev gradients and
applies it to various physical problems.

The Sobolev norm considered in much of the of the prior
literature on Sobolev gradients is the usual Sobolev norm de-
fined on a Banach (or Hilbert) space found in classical func-
tional analysis texts, e.g. Rudin (1973). The key difference
between those metrics and the ones we have considered (also
considered by Charpiat et al. 2007) is that we have defined
geometrized Sobolev norms; these are to be thought of as
the metrics for a (yet to be completely studied) Riemannian
manifold of curves, equivalent up to reparametrization. In
addition to the geometrization of the standard Sobolev norm,
which was also considered by Charpiat et al. (2007), we
additionally proposed a non-standard geometrized Sobolev
norm (see Definition 2.3), which we use exclusively in this
paper. This non-standard Sobolev norm, in addition to yield-
ing more computationally efficient flows (Sundaramoorthi et
al. 2007) compared to the more standard version, also yields
simple analytic solutions for the gradients of the energies
that we consider in this paper.

The main purpose of Sundaramoorthi et al. (2005, 2006)
was to show advantages of using Sobolev active contours
over the traditional active contour based on the same energy.
In contrast, in this paper we introduce new active contour
energies that are quite useful for various segmentation tasks,
but cannot be minimized with the traditional L2 active con-
tour (nor other gradient descent for metrics proposed thus
far), and the Sobolev active contour must be used. We show
examples of these energies, which include simple geomet-
ric priors for active contours and new edge-based energies.
These new energies fall into two categories: one in which the
resulting traditional L2 flows are not stable, and another in
which the traditional L2 gradient flow results in high order
PDEs that are numerically difficult to implement using level
set or particle based methods. We propose to use Sobolev
active contours, which avoid both of these problems.

This paper is meant to illustrate that energies that result
in L2 unstable or high order flows can still be considered for
optimization with the Sobolev method (and these energies
need not be discarded or adjusted). Experiments in this paper
show the types of behaviors that can be obtained from the
simple energies considered, and one can obtain good results
on more complex images by combining these results with
other energies.
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Before we proceed, we make brief remarks on other rel-
evant energy minimizing approaches. The graph cut method
(e.g., Kolmogorov and Boykov 2005) is often used to min-
imize geometric energies such as weighted length, flux of a
vector field, and weighted area. This area of discrete opti-
mization with techniques of this type continues to develop
and more sophisticated energies are being shown to fall into
the feasible category of optimizable energies. For example,
curvature is being handled in certain cases (Schoenemann
and Cremers 2007b), and simple prior shape information
is now being included (Schoenemann and Cremers 2007a).
The energies we use to exemplify the importance of Sobolev
metrics in active contours are more general, and not all rele-
vant energies can (yet) be handled by such graph cut types of
approaches. For very general energies of importance, steep-
est descent methods are necessary, and therefore it is impor-
tant to develop the right shape metrics for defining gradient
descent flows as we show in this paper.

In addition to considering the Sobolev metric, Charpiat
et al. (2005) (see also Mansouri et al. 2004) consider vari-
ous different metrics resulting in ‘coherent’ gradient flows;
indeed they construct flows that favor certain group motions
such as affine motions. In the case of the affine group (oth-
ers are analogous), the flow is formed by re-weighting the
affine component of the traditional gradient higher and the
component orthogonal (according to the I inner product)
lower. These metrics are topologically equivalent to the tra-
ditional geometricized IL? metric in the sense that both met-
rics induce a distance between non-identical curves which
is identically zero. While this does not preclude either of
these metrics for use in shape optimization, it does render
them pathological for applications to shape analysis. More-
over, for the class of energies that we wish to explore in
this paper, the metrics based on group motions also suf-
fer from the same problems as the traditional 1> metric;
namely, these flows are either not stable or are high or-
der PDEs and are difficult to implement numerically. The
authors of Charpiat et al. (2005) also consider smoothing
the standard 12 flow via a non-linear heat equation, which
they term “Gaussian smoothing.” This method was proposed
mainly since such a method, although computationally in-
tensive, is easily adapted to surfaces, unlike the Sobolev
method. Although the Gaussian smoothing approach theo-
retically stabilizes some of the flows that we consider, when
numerically implemented, we observe that instabilities arise
due to the fact that numerically smoothing an ill-posed flow
does not perfectly annihilate all the high frequency compo-
nents in the flow causing the instabilities (see Sect. 6.1 for
more details). This stresses the need for analytical expres-
sions for the smoothed flow, which the Sobolev metrics that
we consider provide, where the instabilities are perfectly an-
nihilated. Still, for many other relevant problems, such flows
considered by Charpiat et al. (2005) are shown to be highly
effective (see also Eckstein et al. 2007).

2 Review of Sobolev Metrics and Gradients

Sobolev active contours were introduced in Sundaramoor-
thi et al. (2005, 2007). We now present an overview. Let M
denote the set of immersed curves in RY (d > 2), which is
a differentiable manifold. For a curve ¢ € M, we denote by
T.M the tangent space of M at ¢, which is isomorphic to the
set of smooth perturbations of the form 4 : S! — RY, where
S! denotes the circle. We denote by E : M — R an energy
functional on M.

Definition 2.1 Let £ : M — R.

If ce M and h € T, M, then the variation of E is dE(c) -
h= %E(c +th)|;=0, where (c +1th)(@) :=c(0) +th(0) and
ges'.

Assume (-, -). is an inner product on T, M. The gradient
of E is avector field VE(c) € T.M that satisfies dE(¢) -h =
(h, VE(c)) forallh e T.M.

One can interpret the gradient as the most efficient pertur-
bation; that is, the gradient maximizes the change in energy
per cost of perturbing the curve. The following proposition
justifies the previous statement.

Proposition 2.1 Let || - || be the norm induced from the in-
ner product (-, ). on ToM. Suppose dE(c) # 0, and VE(c)
exists; then the problem

dE(c) -k

su dE(c)-h = su
i Py KL

{heT .M. ||h|lc=1} {keT. M ,k70}

has a unique solution up to a multiplicative constant, k =
VE()eTM,h=k/|k|.

The traditional inner product used to define active con-
tours is the geometric IL>-type inner product:

Definition 2.2 Let ¢ € M, L be the length of ¢, and &, k €
T.M. We assume h and k are parameterized by the arc-

length parameter, s, of c. We define the I inner product
by

(h,k)pa = %/h(s) - k(s)ds.

Note that, contrary to the usual “parametric” L2 metric,
we perform integration with respect to arclength-parameter.
For this reason, the resulting space of curves is not a flat
Euclidean space.

In Sundaramoorthi et al. (2007), we have explored the
idea of changing the inner product above (i.e., changing the
Riemannian metric on the space of curves) by looking at
Sobolev-type inner products, which we review in the next
section. Changing in this way the Riemannian metric asso-
ciated with the space of curves regularizes the minimizing
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flows associated with active contour energies without requir-
ing the addition of regularization penalties in the original ac-
tive contour energies. The change of metric does not affect
the global minima of the energy, but it completely changes
the notions of gradient and “neighborhood of a curve.” As
a result of the change of “locality,” Sobolev active contours
are much more robust to the local minima that strongly in-
fluence standard active contours, e.g., local minima due to
noise (see Sundaramoorthi et al. 2008 for more details).

2.1 Sobolev Metrics on Closed Curves

We now present the definition of geometric Sobolev-type
metrics used in this paper:

Definition 2.3 Let ¢ € M, L be the length of ¢, and 4, k €
T.M. We assume h and k are parameterized by the arc-
length parameter, s, of c. Let A > 0. Define

— 1
h:= Z/Ch(s)ds,

and
(h, k)SoboleV,c =h-k + )LLG (h(n)’ k(n))]Lz,c’

where 2 is the nth derivative of & with respect to arc-
length.

Our choice of the definition of the Sobolev-type inner
product above has two advantages over the usual defin-
ition of Sobolev inner products as the sum of all lower
order derivatives: the corresponding formulas for gradient
flows are much simpler, and the computational complexity
to solve for the Sobolev metrics above is linear in the num-
ber of sample points of curve, whereas it is quadratic for the
usual Sobolev definition. Moreover, the two Sobolev-type
norms are topologically equivalent, and the corresponding
gradient flows have the same qualitative behavior in many
cases (see Sundaramoorthi et al. 2007, 2008).

We now review the details for calculating the Sobolev
gradient in terms of the IL> metric. In this paper we are inter-
ested in first order Sobolev gradients (n = 1) to illustrate our
concepts, and thus we give the formulas for computing the
first order Sobolev gradient. It can be shown (Sundaramoor-
thi et al. 2007) that if E is an energy on the space of curves
and g = VsobolevE and f = V2 E, then

f(s)=F —ArL%>g"(s) wheres €0, L] 1)
and we have periodic boundary conditions. This yields the

solution

1

g(s)=¢g(0) +s5g°(0) — 2

/0 s =HfE - Hds, 2
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, , 1 K R _ R
¢'(s) = g/(0) - W/o (FG) - T, 3)
/ 1 L s

g(O)z—m ; s(f(s) = f)ds, 4)

L
g(0) = /0 f(s)K (s)ds, %)
where
1 (s/L)?> —(s/L)+1/6
K(s)_z(1+ > ) se[0,L]. (6)

We see that g and g’ may also be written as a convolution:

g(s) =/K(§ — ) f(5)ds =: (K * f)(s), @)
§'()=—(K"* f)(s) ®)

and we have the important relation that will be quite useful
for calculations below:

1 1
K”(s):m(——S(s)>, sel[0,L). ©))

L
It should be noted that for numerical purposes, one never
uses the convolution formulas (7), (8), rather one uses the
equivalent formulas (2), (3), which is linear in the sample
points of the curve versus quadratic for (7), (8).

2.2 Sobolev Metrics on Open Curves with Fixed Endpoints

For some applications, e.g. using the elastic energy for curve
interpolation (Horn 1983; Bruckstein and Netravali 1990;
Mio et al. 2004) (see Sect. 3) or even segmentation tasks
where curves hit the boundary of the image domain, it is
necessary to look at metrics on open curves.

Definition 2.4 Let ¢ : [0,1] — R? such that ¢(0) = py,
c(1) = p1 where pg, p1 € R4 are fixed. Let h, k : [0, 1] —
R? be perturbations of ¢ (i.e., h(0) = k(1) = k(0) =
k(1) = 0), then we define the following inner products:

1
(o K)ypa = —/h(s) k(s) ds,
) L c
(h, k)Sobolev,c = LG (h(n), k(n)>]]_lz’c,

where A is the nth derivative of & with respect to arc-
length.

Note that we no longer need the zero order term in the
definition of Sobolev inner products since translations are
no longer possible (with fixed endpoints). The computations
become easier without the zero-order term, and moreover,
the corresponding norms are equivalent to the norms that
include the zero order term.
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We now compute the Sobolev gradient in terms of the L2
gradient for order one (n = 1). Suppose E is an energy on c,
and g = VsopolevE and f = V2 E, then
—L?g"=f, withg(0)=g(L)=0.

This yields a solution of

1 s
§6)=58'0) ~ - / (s — §) £ () ds, (10)
0
1 S
SO =50+ fo £G) 5, (1)
/ 1 L A A A
g(0)=ﬁ/0 (L—3)f6)ds, (12)

and a similar formula can be obtained for g = Vy 2 E, in par-
ticular the solution is obtained in linear time. In terms of a
kernel, we have that

L
g(S)=K(f)=/0 K(s,$)f(5)ds, (13)
where
. g §
Rp= Lo, 0=8=s (14)
Llsa-4), s=<s§=<L,

and we have the relation
— L%, K (s5,8) =8(s — §).

Notice that (13) is no longer a convolution as in the closed
curve case, but more generally a symmetric linear operator.

3 Some Useful Energies Precluded by 1.2

In this section, we introduce three geometric “‘energies,”
which can be used as building blocks to produce a variety
of other useful energies (to be described in subsequent sec-
tions). We then derive the L?> gradient and show that the
gradient descent flow is either ill-posed or very difficult to
implement numerically. We then derive the corresponding
Sobolev gradient flows, and justify that they are well-posed
and numerically feasible to implement. A rigorous proof of
these results is quite difficult since these equations are geo-
metric, non-linear, non-local PDE, and this is the subject of
ongoing efforts (see also Proposition 4.1 in Sundaramoorthi
et al. 2007). The property that ill-posed flows in one met-
ric become well-posed in another metric shows that the ill-
posedness is not solely due to the energy, but is also related
to the metric chosen to define the gradient.

In this and subsequent sections, consider plane curves.
We use the notation that if ¢ is a plane curve, then

¢s = unit tangent vector to c,
¢gs = second derivative of ¢ w.r.t. s,

N = unit inward normal of ¢,
K =cs - N,

dy = derivative w.r.t. s.

The first “energy” that we introduce is the following gen-
eralization of average weighted length:

1 _
E@=7 qu(c(s))ds 3. (15)

where ¢ : R2 — R* where k > 1. The L2 gradient of this
energy (see Appendix A.1) is

Vi2E(e) = NINT(DO)T — k(¢ — )], (16)

where T denotes transpose, and D denotes derivative. Since
¢ — ¢ is not strictly positive, the gradient descent flow has
a component that is reverse heat flow on roughly half of the
contour, and therefore the IL? gradient descent is ill-posed.
Note that the reverse heat component attempts to increase
the length of certain portions of the contour. Since the ill-
posedness of the I flow only arises from the length increas-
ing effect, we expect the Sobolev gradient flow to be well-
posed. This is because increasing the length of the contour
is a well-posed process using the Sobolev gradient; indeed,
the Sobolev gradient ascent for length is simply a rescaling
of the contour (Sundaramoorthi et al. 2005). Computing the
Sobolev gradient of (15) we have that (see Appendix A.1)

c—Cor T / T
Vsobolev E(€) = ==—7¢ + K (D¢)" + K'x (cs¢”).
a7

Notice that the component, N\ ETK, of the IL? gradient that
caused the ill-posedness has been converted to the first term
of the Sobolev gradient (17), which is a stable rescaling of
the contour.

Next, we introduce a scaled version of the weighted area,
given by the energy

1 Ag
E(c)= ﬁ/Rqﬁ(X)dA(X) =712 (18)

where ¢ : R2 — R, R is the region enclosed by ¢, and dA is
the area measure in R2. Similar to the previous energy, the
ill-posedness of the L2 gradient descent flow of (18) is due
to the scale factor of L2, which causes a length increas-
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ing component in the gradients, and is ill-posed with respect
to I.?. Indeed, calculating the gradient, we have

L?VAy —2A4,LVL Az[VA VL
VE(c) = ¢ ¢ - _¢[_¢ _ 2_].

L4 L2 Ay L
Therefore, we see that

Ap [, K * (pN) c—c
—F[L +2 ]

\% E =
Sobolev E (€) Aqb L2

(19)

which leads to a well-posed descent (and ascent).
Lastly, we introduce the following generalization of the
elastic energy:

E@)=L / B(c(s)ic>(s) ds, 20)

where ¢ : R? — R, and « is the signed curvature of c. The
factor of L multiplying the integral makes the energy scale-
invariant when ¢ is a constant. Note that without the factor
of L, one can make the elastic energy arbitrarily small by
scaling a contour large enough. We will also consider the
scale-varying elastic energy without the L for segmentation
applications. These energies have been used in the past for
the “curve completion” problem, which is a curve interpo-
lation problem between two points (Horn 1983; Bruckstein
and Netravali 1990). In Bruckstein and Netravali (1990), for
the numerical implementation, a discrete version of the en-
ergy is minimized with a “shooting” method. One can show
that the L2 gradient of (20) (see Appendix A.2) is

V]LZ E(c) =—Ecg + 2Lzass (pcss)
+3L%3 (prc’cs) + L*k*V . 1)

We note the result of Polden (1996), which considers the
L2 gradient descent flow of an energy similar to (20). The
author considers the 1> gradient descent flow of the energy

E(e) = / (2(s) + @) ds,

where o > 0. It is proven that an immersed/regular curve
evolving under this fourth-order flow stays immersed/
regular, and a solution exists for all time. In the case when
¢ is a constant, the flow (21) is similar to the flow that is
considered in Polden (1996), except that « is time varying
in (21). For numerical implementation, the fourth order flow
(21) is difficult to implement with marker particle methods
because of numerical artifacts arising from fourth order dif-
ferences, and it is even more problematic (e.g. Droske and
Rumpf 2004) to implement with level set methods because
the flow is not known to have a maximum principle and be-
cause of numerical artifacts. This motivates us to consider
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the Sobolev gradient flow (see Appendix A.2):

E _ ) 2
m(c—c +X((¢css)_¢cﬂ)

—3L%K' % (¢pK’cs) + LPK * (k2Vg). (22)

VsobolevE = —

The Sobolev flow is second order, although it is an integral
PDE. We can bypass the question about a maximum prin-
ciple for this flow since the local terms have a maximum
principle, and we perform extensions in the level set imple-
mentation for global terms.

4 Geometric Priors for Active Contours

In this section, we introduce some simple geometric shape
priors for use in active contour segmentation. As these ener-
gies are formed from the energies presented in the previous
section, they cannot be minimized with the usual L2 gradi-
ent descent.

4.1 Length and Smoothness Priors

In many active contour models, a curvature term, i.e., axk N
(where @ > 0 is a weight), is added to a data-based curve
evolution. The resulting flow will inherit regularizing prop-
erties such as smoothing the curve from the addition of this
term. If the active contour model is based on minimizing an
energy, then adding a curvature term is equivalent to adding
a length penalty to the original energy, that is, if Eq,, is the
original energy then the new energy being optimized (w.r.t.
the traditional L2 metric) is

E(c) = Eqata(c) +aL(c). (23)

This may be considered as a simple prior in which we as-
sume that the length of the curve is to be shrunk. In gen-
eral segmentation situations, this assumption may not be
applicable. A more general energy incorporating length in-
formation, when such prior length information is known, is

E(¢) = Edaa(c) + a(L(c) — Lo)?, (24)

in which it is assumed that length of the target curve is
near L. Note that this prior allows for increasing or de-
creasing the length of the curve based on the current length
of the curve and the value of Lg. The L. gradient is

Vi2E(¢) = Vi2 Eqaa(c) — 2a(L — Lo)k N,

which leads to an unstable flow if L — Ly < 0. The Sobolev
gradient is

c

c—
AL

Vsobolev E (€) = Vsopoley Edata(¢) + 20(L — Lg)
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which is stable if the data term is stable.

One can also consider flows that preserve the length of
curves rather than penalizing deviations from a target length.
See Sapiro and Tannenbaum (1995) (and references within)
for related flows where the length of the curve is preserved.
To derive length preserving flows that minimize an energy,
one can calculate the gradient flow and project it onto the
subspace of length preserving perturbations. Traditionally,
one has an L2 gradient, i.e., V2 E(c), and an L2 projection
is done onto the subspace of length preserving perturbations:

7w (V2 E(c)) = V2 E(c)

_ (V]LZE(C), VLZL(C)>HO V]LzL(C),
(V]LZL(C), V]L2L(C))HO

Note V2 L(c) = c¢gg = kN Thus,

<V]L2 E(C), KN)HO

7L (V2 E(e)) = V2 E(c) — T as

kN,

and the flow corresponding to the above will decrease the
energy of interest while preserving the length of the curve.
Depending on the sign of the inner product above, the flow
may be ill-posed. For example, if we look at the simple
Chan-Vese or Mumford-Shah IL? flows then the inner prod-
uct may give a negative sign and result in backward heat
flow. The Sobolev projection for preserving the length re-
sults in a well-posed process provided the original gradient
descent is well-posed:

7L (Vsobolev E(¢)) = Vsobolev E (€)
{Vsobolev E (), %)Sobolev c—¢
L fle—clds  ALZ

In active contour works, the goal of adding the usual
length penalty may have been mainly for obtaining the regu-
larizing properties of the resulting flow, even though the en-
ergy itself does not favor more regular curves. It is evident
that the Sobolev length descent does not regularize the active
contour since the flow is a rescaling of the curve. Thus, to
introduce smoothness into the Sobolev active contour (and
even the L2 active contour), we introduce the smoothness
prior given by the energy,

E(c) = Eqaua(c) +06L(C)fK2(S)dS~ (25)

The energy itself favors smoother contours, and we are not
relying on the properties of a particular metric for regular-
ity; it is inherent in the energy itself. The factor of L is for
scale-invariance (unlike the length descent, this regularizer
does not favor shrinking the length of the contour). Using the
scale-varying and scale-invariant elastic energies as smooth-
ness measures for active contours is mentioned but not im-
plemented in Delingette (2001), Brook et al. (2005).

4.2 Centroid and Isoperimetric Priors

We now consider incorporating prior information on the
centroid, length, and area of a curve into active contour seg-
mentation. We consider the energy

E(¢) = Egqaa(c) + ¢ — v]?
+ B(L — Lo)> + y (A — Ap)?, (26)

where o, 8,y > 0 are weights, ¢ is the centroid of the
curve ¢, v € R? is the centroid known a-priori (see Sect. 6.3
for an example of how this may be obtained), Ly and Ag are
the prior values for the length and area. If detailed informa-
tion is not known about the length and area, then that part of
the energy may be replaced by the energy

E(c) = Eqaa(c) + al|c — v||I* + B(p(c) — po)?, 27)
where

_A®©)
PO= T35 (28)

is the isoperimetric ratio, which is a geometric measure of
the relative relation between the length and area of a curve.
Note that p is scale-invariant. It is a well known fact that the
isoperimetric ratio is maximized by circles, and the max-
imum ratio is 1/(4m). Thus, the prior ratio must be con-
strained so that pg < 1/(4m). Note that a low (near zero)
isoperimetric ratio can be obtained by a snake-like shape,
and a high ratio implies a shape that looks close to a circle.
The isoperimetric ratio is mentioned to be used as a smooth-
ness measure in Delingette (2001), but this idea is not pur-
sued.

Note that both the > gradient descents for the centroid
constraint and the isoperimetric penalties are ill-posed. The
isoperimetric ratio is a special case of (18) (when ¢ = 1),
and the constraint gives a gradient of (p — pg)Vp, which
gives an unstable > gradient descent flow when p > po.
Note that the centroid is a special case of (15) (when ¢ :
R? — R? is ¢ (x) = x). The gradient of the centroid penalty
is V(¢)(¢ — v), which gives an L2 gradient of

[C=v) N =(c—=70) (c—v)kIN

using (16). The gradient descent is unstable when (¢ —¢) -
(¢ —v) < 0. The Sobolev gradient using (17) is

CE—v)+ K x[cs(c—70)-(c—0)].

One possible use for (26) and (27) is in tracking applica-
tions (see Sect. 6.3).
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4.3 Shape Priors Based on Moments

In this section, we consider prior-based segmentation based
on moments of prior shapes. In traditional prior-based im-
age segmentation, one has a database of likely shapes, and
a principal component analysis (PCA) or related statistics
are computed on shapes in this database. In many papers
on incorporating prior shape knowledge (e.g., Leventon
et al. 2000; Tsai et al. 2001; Rousson and Paragios 2002),
a “shape” is represented by its signed distance function and
the PCA is done on aligned versions of these signed distance
functions. An active contour energy is optimized on the sub-
space of “shapes” spanned by the first few modes of the PCA
in order to segment an image incorporating the prior known
set of likely shapes. Although PCA on signed distance func-
tions is not well-founded since the space of signed distance
functions is not a vector space, the method works well ex-
perimentally in many cases.

Other ways of incorporating prior shape information into
the segmentation (e.g. Chen et al. 2002; Cremers and Soatto
2003; Raviv et al. 2004) is by considering an energy of the
form

E(c,T)= Eimage(c) +d(c,To Cprior)’ (29)

where d would ideally be a metric on curves and cpyior is the
prior known shape. The parameter T is a pose transforma-
tion, which is used so that posed transformed versions of the
shape of interest may also be segmented. In many works, d
is a similarity score between the curves, and usually not a
true metric since a good metric on the space of curves is not
easy to define. To obtain cprjor ONe may compute the average
with respect to d of shapes in a database, i.e., one can com-
pute the shape that minimizes the sum squared distance d to
shapes in the database. The advantage of this approach over
the approach of Leventon et al. (2000), Tsai et al. (2001) is
that the shape has more freedom to deform to shapes not rep-
resented in the database since this model does not restrict the
shape to be a linear combination of principal components.

We look at the latter approach for prior-based segmen-
tation and take d to be a similarity score between shape
descriptors based on moments. Indeed, we consider the de-
scriptors

_ l/(m(S) —a>”<cz(S) _C_2>mds 30)
L J. Oy oy

= %/qﬁ(c(s),?,o(c)) ds, n,m=>3, 3D

On,m

where o (c) = (0x(¢), oy(c)). The above are scale and trans-
lation invariant descriptors. Note that we can give similar
definitions of moments that are rotation and affine invariant,
but we look at the simple case of scale and translation invari-
ance to demonstrate the principle. Therefore, the alignment
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of shapes in the prior database (as in Leventon et al. 2000;
Tsai et al. 2001; Rousson and Paragios 2002) is no longer
necessary. The explicit update of pose parameters that is
necessary to obtain Euclidean and scale invariance of the
prior based model (as in (29)) is also no longer necessary.
One can do a PCA on shapes in the prior database, which
are represented by up to order N of the moments in (30).
Note of course that simple algebraic operations on moments
do not guarantee that the resulting moment correspond to
a shape in the considered class. One can then formulate an
energy that penalizes deviations from the PCA to form d
in (29). In the simplest case, we have that

n+m<N
dprior(c) = E Z Wy,m (On.m (€) — On,m (Cprior))zv (32)

n,m

where 0y (Cprior) is the (n, m) moment of a shape in the
database.

The 1.2 gradient descent of (32) is ill-posed as oy, , it is
a generalization of average weighted length (15). Therefore,
we consider the Sobolev gradient (see Appendix A.3), which
yields

1 c—c¢

VSobolevOn,m = _|:an,m + EUVU¢:| W
c—C —
+ K * |:Vx¢+T-VU¢i|

+ K’ % [d)cs — (¢ —0) - Vyocs

l(c—0)? — }
———— Vedcs | — Voo, (33)
2 o

where V,¢ denotes the derivative with respect to the first
argument of ¢ and we have used the following notation:

c—¢ c1—C ¢—¢C2
o Oy ’ Oy ’

c—=¢C c1—c1 €2 —
v, o :=< Vo . ngqb).

Oy oy

Note that a similar approach of prior-based image seg-
mentation based on moments has been considered in Foulon-
neau et al. (2006), however, the moments are area-based
moments:

1 _ _
On.m = m /R(X —x)’"(y — y)" dx dy,

where X and y are the standard coordinate area-based means.
The authors go on to consider affine-invariant moments.
A reason for using length-based moments over area-based
moments is that the length-based moments are much more
sensitive to and therefore better at discriminating protrusions
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and fine-scale details of the curve. Therefore, it is easier to
detect finer details of the prior curve with length-based mo-
ments with smaller order moments compared to the region-
based case (see Sect. 6.4 for an experiment).

5 New Edge-Based Active Contour Models

The energy for the traditional edge-based technique (Caselles
et al. 1995; Kichenassamy et al. 1995) (called geodesic ac-
tive contours) is

E(e)= / $(c(s)) ds, (34)

where ¢ : R2 — R is chosen low near edges (a common ex-
ample is ¢ = 1/(1 4+ ||V(G * I)|)) where G is a Gaussian
smoothing filter). There are several undesirable features of
this model (even if a perfect edge-map ¢ is chosen). The en-
ergy has trivial (undesirable) minima and even minima that
are not at the edges of the image (see for example Ma and
Tagare 1999). This is in part due to the bias that the model
has in preferring shorter length contours, which may not al-
ways be beneficial. Therefore, we propose new edge-based
models.

5.1 Non-Shrinking Edge-Based Model

We propose to minimize the following non-length shrinking
edge-based energy:

E(c)= /qb(c(s))(L_1 + OlLK2(S)) ds, 35)
c

where a > 0, which we claim alleviates some of the undesir-
able properties of (34). An energy, which is similar to (35)
(except for the factor of L on the curvature term), is consid-
ered by Fua and Leclerc (1990), but a discrete version of the
energy is used for implementation. The first term, % [.pds
(i.e., (35) when « = 0), is the same as the energy used for
the geodesic active contour model, but there is a scale factor
of 1/L. This removes the length shrinking effect of (34) in
descent flows; in particular if there are no edges (¢ is con-
stant), then a descent flow will not shrink the contour. The
L2 gradient of the first term (when o = 0 in (35)) as noted
in (16) is

—L(¢ — p)kN + L(Vg - NN,

which is zero when the contour is aligned on true edges of
the image (note that this may not be the case with the geo-
desic active contour model). The flow is stable with respect
to the Sobolev metric, but not with respect to L2

Dividing the energy (34) by L, as in the first term of (35),
loses regularizing effects of the original flow, and it is pos-
sible that the contour can become non-smooth from irrel-
evant noise. This observation is the reason for the second
term of (35). The second term, L fc ¢/<2 ds, is an image de-
pendent version of the scale-invariant elastic energy. This
term favors smooth contours, but smoothness is relaxed in
the presence of edges, which are determined by ¢. The fac-
tor of L makes the energy scale-invariant when ¢ is con-
stant; therefore, a descent flow will not increase or decrease
the length of the contour unless these behaviors make the
curvature smaller or make the contour align along the edges.
The reason for not considering this term alone is for the fol-
lowing. Suppose we are considering open curves with two
endpoints fixed. Regardless of the ¢ that is chosen, the min-
imum of this term is always zero, and it is minimized by
a straight line (the curvature is zero). For closed contours,
we have observed in the numerical implementation that the
contour sticks to isolated points where there is an edge of the
image, and the converged contour is a straight line between
these points (even if there is no edge along the line). Thus,
the contour looks polygon-like. Even though the x = +o0 at
vertices of polygons, this is not true numerically where « is
finite. Therefore, in a numerical implementation, the second
term of (35) is not useful by itself.

5.2 Increasing Weighted Length

Instead of a non-shrinking edge-based model, if we have
prior information that the length of the curve should in-
crease, e.g., the initial curve is within the object of interest,
then one may want to maximize the following energy:
E(c) = /¢(c(s)) ds — /Kz(s) ds, (36)
c c

where o > 0, and ¢, contrary to the geodesic active con-
tour model, is designed to be large near edges (one example
is choosing ¢ = ||VI|). The first term of the energy is a
weighted length, and therefore this term favors increasing
the length of the curve while stopping near edges. Consider-
ing only the first term ((36) when o = 0), since the length of
the curve is being increased, it is likely that when the curve
has converged on a coarse scale, fine details due to noise be-
come detected and the curve becomes rough, thereby further
increasing length. Therefore, we add a regularizer, which is
the second term of (36), to the weighted length. Note that we
propose to use the scale-varying elastic energy, which in ad-
dition to regularity, gives an effect of increasing the length of
the curve, which is beneficial based on the prior assumption.

The L? gradient ascent of the weighted length term re-
sults in one term that is —¢@x A/, which makes the length
of the curve increase and is unstable. If & > 0, then the L2
flow of (36) may become well-posed since this results in
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Fig. 1 Flows increasing the length of the curve. Left to right: ini-
tial contour, after 100 and 400 iterations of smoothed backward
heat flow (10 smoothing iterations), after 250 and 1000 iterations
of smoothed backward heat flow (100 smoothing iterations), Sobolev

higher order regularity terms, but the elastic energy has its
own problems using the > gradient flow. Therefore, we use
the Sobolev flow.

6 Experiments

In the following experiments, we use level set methods to
implement the curve evolutions. The numerical implemen-
tation for Sobolev gradient flows follows what has been de-
scribed in detail in Sundaramoorthi et al. (2007).

6.1 Stability of Length Increasing Flow

In this first experiment, we consider simple flows to increase
the length of an initial curve. First, we consider the Gaussian
smoothing approach of Charpiat et al. (2005), that is, we
consider numerically implementing the flow ¢; = —Ss(css)
where S5 is a Gaussian smoothing operator. Note that since
Ss is the solution of the heat equation on the circle, one can-
not obtain a closed form solution for S5 as a convolution
kernel as in the case of the Sobolev metric. Therefore, one
is forced to numerically implement the smoothing process.
In Fig. 1, we show that while theoretically the Gaussian
smoothed flow is stable, the numerical implementation gives
many irregularities, which are signs of instabilities. This is
probably because the numerical smoothing does not annihi-
late exactly all of the high frequency components causing
the instabilities of the original flow. On the other hand, the
Sobolev gradient ascent is numerically stable as we have a
closed form solution for its gradient (Fig. 1).

6.2 Regularity of Sobolev Active Contour

In this experiment, we show a case when the scale-invariant
elastic regularity term (25) is more beneficial than the using
the traditional length penalty (23). Note that the elastic reg-
ularizer does not generally have a length shrinking effect,
but keeps the contour regular. This length shrinking effect
may have a detrimental effect as shown in Fig. 2. Note that
the length penalty restricts the curve from moving into the
groves between the fingers. The elastic regularity term, on
the other hand, has no such restriction, and makes the curve
more smooth and rounded.
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gradient flow after 100 and 400 iterations (this is independent of A).
Notice that the Gaussian smoothed flow builds up irregularities numer-
ically, and smoothing more helps delay the build up of the irregularities

6.3 Tracking with Centroid/Isoperimetric Prior

In this experiment, we illustrate one possible application of
the energy (27) in tracking a man through an occlusion. For
the data-based term in (27), we use the Mumford-Shah en-
ergy (Mumford and Shah 1989). The prior information on
the centroid and isoperimetric ratio can be obtained through
a filtering process (indeed, we assume a constant accelera-
tion model of both quantities). We use the tracking frame-
work of Jackson et al. (2004) for the simulations in the last
two rows of Fig. 3. In summary, the method of Jackson et
al. (2004) (like many other tracking algorithms) consists of
two steps: (1) a detection step, in which the curve is up-
dated according to image data and (2) a prediction step, in
which the curve is extrapolated forward according to prede-
fined dynamics. The detection step involves a simultaneous
segmentation and rigid registration (which we choose to be
a simple translation) of three consecutive frames based on
the energy (27). For the prediction, a constant acceleration
model is assumed for the parameters of the rigid registra-
tion. The measurements that the estimator uses to estimate
the contour and its registrations are the results of the detec-
tion step. A Kalman gain is used to determine if more weight
is put on the measured contour versus the model prediction.

The top row shows the result using the framework of
Jackson et al. (2004) without the use of prior centroid and
isoperimetric information (¢ = 8 = 0 in (27)) using the L2
descent. The middle row is the results of the experiment
on the top row except that the descent of the data-based
energy is done according to the Sobolev metric. Note that
the Sobolev active contour improves the result, but is un-
able to pass through the occlusion. The bottom row incor-
porates prior information on the centroid and isoperimetric
ratio (¢ = 50000, 8 = 100 in (27)). Notice that the prior in-
formation on the centroid keeps the contour moving through
the occlusion, while the isoperimetric ratio (and because
Sobolev active contours favors coarse-scale motions such as
translations) keeps the shape constrained.

6.4 Prior Shape Segmentation with Moments

We now show results of using simple shape priors based
on moments for image segmentation. In the first experiment
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Fig. 2 1.2 regularization (top
two rows). Left to right:

o = 1000, a = 1000 followed
by curvature smoothing to
remove the noise (least number
of iterations to remove noise),

a = 10000, 50000, 90000. The
image-based term is Chan-Vese.
Sobolev elastic regularization
(bottom two rows). Left to right:
a=0,0.1, 5, 10, 25. The second
and fourth row show the same
result as the row above them,
but the image is removed for
visibility

Fig. 3 Tracking a man through
an occlusion. Bottom row shows
the results of using a prediction
(filtering) on the centroid and
the isoperimetric ratio, and then
penalizing deviations of the
contour away from predicted
parameters by (27) (e = 50000,
B =100). The top row gives the
result with no such penalty
using usual L2 (@ = =0

in (27)), and the middle row is
using Sobolev active contours
with no prior (e =8 =0

in (27))

(Fig. 4), we show the usefulness of incorporating a covari-
ance prior for object tracking. In this experiment, we seg-
ment frame-wise using the energy

E(c) = Ecy(c) + [ Z(c) — Z(co)lI%

where E., is the Chan-Vese energy (Chan and Vese 2001),
and

E(C):<<72,0(C) 01,1(6)), and

o1,1(c) 09,.2(c)

1 ‘ :
oij(c) = I /(61(S) —c1)' (c2(s) —2) ds,

and cq is the initial curve in the first frame. Note that we
are considering scale-varying variances since we would like
to place a prior on the scale of the object. Figure 4 shows
that without such a variance prior even with Sobolev ac-
tive contours, the contour expands to the background since
this portion of the background resembles the object more
closely than the dark area. However, when adding a prior on
the covariance obtained from the initial contour in the initial

@ Springer



124

Int J Comput Vis (2009) 84: 113-129

Fig. 4 Tracking of a sea creature using a covariance prior from the
initial frame. The top row shows the tracking using a simple Chan-Vese
detection energy with Sobolev active contours. The bottom row shows

Fig. 5 Prior-based image
segmentation based on
moments. Top row: the first
image is the prior shape from
which 5th order moments are
extracted, the second image is
the image to be segmented, and
the last image is the image to be
segmented with the initial
contour. Bottom row: final L2
active contour with no prior,
Sobolev active contour with no
prior, Sobolev active contour
with area-based moment prior,
and Sobolev active contour with
length-based moment prior

frame, the curve is restricted from bleeding into the back-
ground.

In the experiment in Fig. 5, we perform a prior-based seg-
mentation on a image that is both occluded and distorted by
Gaussian noise (mean 0 and variance 0.6). We segment us-
ing the energy

E(c) = Ec(c) + dprior(c),

where d is defined in (32), and we use up to 5th order mo-
ments. The figure shows that without the moment-based pri-
ors, the segmentation captures the (unwanted) rectangle and
cannot expand to capture the tail of the plane due to the high
level of noise. The segmentation with area-based moments
does much better and avoids the rectangular bar, but cannot
expand in to capture the tail. The length-based moment prior
segmentation avoids the rectangular bar and easily expands
to capture the tail of the plane. This is because protrusions
with large length and small area are much easier to capture
with length-based moments. One could capture the tail with
area-based moments, but one would need to use much higher
moments, for example, in Foulonneau et al. (2006) the au-
thors use around 40th order moments for their segmentation.
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the result when adding a simple covariance prior obtained from the ini-
tial frame, which can only be optimized with Sobolev active contours

6.5 Edge Detection with Non-Shrinking Model

We first show an experiment (Fig. 6) to illustrate the be-
havior of the first term of the non-shrinking edge-based
model (35). Because the standard edge-based energy prefers
to shrink the curve in the absence of edge information, the
corresponding flow (either in the H® or the Sobolev metrics)
is not suitable for capturing concavities, where it is desirable
to increase the length of the curve. Since the average value
of the standard geodesic energy is not preferential to shrink-
ing nor increasing the length of the curve and it is solely
influenced by the edge information, this model has a better
ability to capture concavities.

In this experiment, we demonstrate that the traditional
edge-based geodesic active contour model has an arbitrary
length shrinking effect that causes the contour to pass over
some meaningful edges. We show that the non-shrinking
edge-based model (35) can help correct this behavior. We
use the edge-map, 1/(1 4+ ¢), where

¢(x) (I (y) =T, (x)*dA(y), (37

1B B
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Fig. 6 Segmentation of concave object. Standard L% geodesic active contour (fop); the Sobolev active contour is similar, and using the first term

of the non-shrinking model with Sobolev active contours (bottomn)

Fig. 7 Segmentation of cyst
image with three different
initializations (first image in
each row). Converged results for
the (34) and L2 active contour
(second image), (34) with the
Sobolev active contour (third
image), and the energy (35) (last
image)

Fig. 8 Left to right: initial
contour, minimizing (39)

o =0.2,0.25,0.4 using L2, and
increasing weighted (36)

o = 0.1 using Sobolev (all
images show converged
contour). The contour expands
to enclose the entire image (fifth
image)

— 1
I.(x)=—
" 1B:| JB,(x)

I(y)dA(y), (38)
Br(x) ={y € R?: |y — x|| <r}, and |B,| denotes the area
of B,.

In Fig. 7, we segment a cyst image using various initial-
izations. Notice that the contour with the traditional edge-
based energy (using the 2 or the Sobolev descents) con-
sistently passes over the edge on the right side of the cyst.
The non-shrinking model consistently captures the correct
segmentation.

6.6 Edge Detection by Increasing Weighted Length

In this experiment, we apply the weighted length increasing
energy (36) to vessel segmentation. We show the results of
using the traditional edge-based technique with a balloon;

that is, we show results of using the > gradient descent for
the energy

E(c):/¢(c(s))ds —a/ ¢dA. (39)
c R

We use (37) as the edge-map for the weighted length in-
creasing flow. The edge-map for (39) is 1/(1 4 ¢) where ¢
is given in (37).

In the case of vessel segmentation, it is beneficial to in-
crease the length of the initial contour more so than area.
Since a vessel is characterized as a long, thin structure, a
balloon term will fail to capture the global geometry of the
vessel. This is demonstrated in Fig. 8: a small weight on the
balloon term results in the flow capturing local features close
to the initial contour; larger weights on the balloon makes
the contour balloon out to capture the entire image. Note the
weighted length maximizing flow does not pass the walls of
the vessel since that does not increase the length (although
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it does increase area) of the contour, and is therefore able to
capture the vessel.

7 Conclusion

We have demonstrated that the Sobolev gradient method al-
lows one to consider active contour energies that were not
considered in the past because the gradient method using
the traditional metric cannot be used. In particular, we have
given examples of energies that result in > gradients that
are ill-posed or lead to high order PDEs (and hence numer-
ically difficult to implement). These energies, as we have
shown, result in Sobolev gradient flows that are both well-
posed and numerically simple to implement. The experi-
ments have shown potential uses for some energies intro-
duced in segmentation and tracking applications.

Appendix A: Derivation of Sobolev Gradient Flows

Note that in this appendix, all Sobolev gradients are com-
puted with respect to the first order (n = 1) Sobolev metric
(2.3), and therefore, the expressions are in terms of the ker-
nel, K, defined in (6). We recall the notation that if L is the
length of a curve c and f : [0, L] — R4 (d > 2) then

|

f= Z/Cf(s)ds.

Moreover, recall the notation presented in Sect. 3.
A.1 Average Weighted Length

Let
1
E(c)= 7 ¢ (c(s))ds,
c
where ¢ : R? — RF where k > 1. We now compute the L2

gradient for k = 1:

VLZLE lv LE
2 (C)+Z 2 (LE(c))

=ExN + Vo - NN — pxe N
= V¢ - NN — (¢ — E)xN. (40)

V]LZE(C) = —

For the general case of k, we find
Vi2E(@©) =NINT(D$)" — k(¢ — E)'],

where T denotes transpose. We now compute the Sobolev
gradient for k = 1:

VSobolev

L 1
Vsobolev E(€) = — 7 E(c) + Z Vsobolev (L E(c))
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:—E%—FK*Vd)—l—K’*(qbcs) (41)
c—¢ ¢c—¢c

Y ALZ

— (¢se) %K'+ VK, (42)

where ¢ = d/ds¢ (c(s)). For the general case of k, we find

_c—=c. 71 T / T
VSobolevE(C)—_WE + K *%(D¢)" + K *(cs¢”)

_ _C—EET n coT —cpT
AL? AL?

— (cp) x K' + (D) % K.

A.2 Scale-Invariant-Type Elastic Energy
Let
E(c)= L/qﬁ(c(s))/cz(s)ds.

c

We denote C : S! x [0,1] = R¢ (C(p,t) € R?) to be a
time varying family of curves, and we will write E(¢) :=
E(C(-,t)). First note that
Csst = Ctss - (Ctss : Cs + Cts : Css)Cs - 2(Cts : Cx)css»
and since C; - Cyg = 0, we have that
ad
E(Css . Css) = zcssl . Cssz(ctss . Css)

- 4(Cts . CS)(CSS : Css)- (43)

Next we find that

9 o Cip-Cp
5(¢(C)|Cp|) =V¢ - C|Cpl +¢7|C,,|

=(C; - Vo +¢(Crs - C)ICpl. 44)
Now,
d 1
E'(1) = @ (L/ #(C)(Css 'Css)|cp|dp>
t 0

E 13
_ —LZ+L/ L B©)ICyCys - Cydp
L o Ot

+L/ ¢(C)2(Css - Cys) ds.
C at

By substituting (43) and (44) into the last expression above,
we have that

E/([) = / C - (_Ecss + L(Cys - CYY)V¢> ds
C L
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2
4L / (26(Crs; - Css) 5 (@) — deg) — LK % (9%
C
= 3¢(Crs - C5)(Cys - Css)) ds. + L°K (K2V¢). @7

Integrating by parts, we find that

E'(t)= % /C Cr - (—ECs5 4+ 2L%355(¢Csy)
+3L%85(¢(Cys - Cy5)Cs)
+ L?*(Cys - Cy) V) ds.

Hence,

Vi2E(c) = —Ecgs + 2L 355 (¢css)

+ 3L28x (@ (css - Css)Cs) + Lz(css Css) V.
(45)

This form will be useful in computing the Sobolev gradient,
but we simplify the expression (45) to understand the 1>
flow in the planar case:

Oss (PCss) = Oss (¢KN)(¢SSK + 2¢5k5 + Prcss — ¢K3)N
— Qepste® + 3rccs)c;

also,
0y (¢ (s -+ Cs)s) = By (i)
= (psk? 4 2¢KK5)cs + i N
Therefore,
2055 (Css) + 305 (P (Css - Cs5)Cs)
= Qepgsk + Adpsics + 2¢Kss + PN — dyic>cs,

and finally,
2 E
Vi2E(c) =L —ﬁK‘FZQSmK + dopsics

+ 2picss + P> + K2V -N)N. (46)

Computing the Sobolev gradient from (45), we have that
VsobolevyE = K x V2 E
= —EK"sc+2L°K" % ($cys)
— 3L2K/ * (P (Cyy -+ Cy5)Cs)
+ L?K x ((css - c55)VP).

Hence,

E _
VsobolevE = _m (c—o

A.3 Moments

We calculate the gradients of the moments defined by

1 /(Cl(s) —a)"<62(8) —E)m
Opm = — ds
’ L J. Ox oy

= %fcqﬁ(c(s),a 0y,0y)ds

where n,m > 3 and

1
sz =71 /(Cl(s) —on?ds, and
.

1
Gy% = z/c(cz(s) — &) ds.

We will denote Vy, D, D(,/v to be the derivative w.r.t. the
first, third and fourth argument of ¢. Then

d
Eo'n,m (C@))

= %/;Ct . [Ecss + V¢ — (¢Cy)s — V]L2(E)W] ds

J— . —J
L C ox dr *

1 o
== / Cr-[ECy + Vi — (Co)y — Vo2 (©)Vrd] ds
C

d
Dy, ¢ - —oy | ds
YEodr

+i/ Ci - [(Do, @) Vi 20y ] ds
LJc

1 J—
+ Z/ C- [(DU).¢)V]L20)’)] ds
C

1

L /C Ci - [ECss + Vi — (@Cy)s — V12(C) Vi

+ V1204 Do, ¢ + V120, D, | ds,

and therefore,

c—c¢
VSobolevOn,m = _Em +K*V,p+ K’ x (¢pcs)
— Vsobolev (€) Vx® + VsobolevOx D0X¢
+ VSobolevo'y Day¢-
Note that
1 c—¢ _
VSobolevOx = E[_maxz + 2K % (c1 — 1)

+ K % (c5(c1 — a)ﬂ,
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and so setting o = (0, 0y) and Vo = (Do, ¢, Do, p), we
have

Vsobolevo Vo @
c—¢, = c1—C] ca—0C2
=— Y/ K _ -V
2)\[42(0' o®) + *|:< oy oy ) U¢:|
1 _ =2 _=\2
Ly |:Cx ((61 ) () ) 'Va¢]
2 Oy oy
c—¢ S c—¢
=52 Vo) + Kk | Vo)
1 (c —¢)?
+§K/*|:054'V6¢j|,

where

c—¢ c1—¢ ¢a—C
o Oy ’ oy ’

c—c €1 —Cl——F 20— C2—
Voo := ( D; ¢, DUV¢>.
o Oy oy ’

Therefore,

VsoboleyOn m
_ c—¢ ,
——EW'FK*VX(IS-FK * (¢cs)

—Vip — K" % [cs(c =€)Vl

_c-e v—)+1<*[—c_zv_}
2)»L2U. ¢ o ¢
=2

+ %K/ x |:csu - vm]

1

c—c¢
= an,m+§U'Va¢ L2

cC—C—
+ K * [qub + —Va¢>i|
o

+ K’ x |:¢Cs —[(c—0) ‘m]cs

[ ]
+ | ——— Vo |cs | = Voo
2 o
Note that
¢(-x7y’O—X7ay)=<x_E) (y_y) 5
Oy Oy
and
nlx =)o, 1"y = oy 17,
V.- ml(x =)o 'y =o', nom#0,
T Ooml =)o, n=0,
(nl(x —x)o 111, 0), m=0
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and
(no ' [(x = Do 'y = P)oy 11",
moy‘l[(x — X)o7y — i)ay_l]’”),
Vop = — n,m=#0,
0, mo; M [(y =)oy 1), n=0,
(no 7 [(x —%)o, 1™, 0), n=0
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