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Abstract We present a variational method for unfolding of
the cortex based on a user-chosen point of view as an alter-
native to more traditional global flattening methods, which
incur more distortion around the region of interest. Our ap-
proach involves three novel contributions. The first is an en-
ergy function and its corresponding gradient flow to mea-
sure the average visibility of a region of interest of a surface
with respect to a given viewpoint. The second is an addi-
tional energy function and flow designed to preserve the 3D
topology of the evolving surface. The third is a method that
dramatically improves the computational speed of the 3D
topology preservation approach by creating a tree structure
of the 3D surface and using a recursion technique. Experi-
ments results show that the proposed approach can success-
fully unfold highly convoluted surfaces such as the cortex
while preserving their topology during the evolution.
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1 Introduction

In this paper, we are interested in maximizing the visibil-
ity of a local region of a surface from a given viewpoint.
A wide variety of visibility-related problems appear in many
different research areas such as computer graphics, com-
puter vision, computational geometry, and robotics, just to
mention a few (Durant 1999). Visibility applications include
shadow computations (Woo et al. 1990), rendering (Hertz-
mann and Zorin 2000), etching (Sethian and Adalsteinsson
1997), and object recognition (Pope 1994) among many oth-
ers. Even though a large amount of research has been done
on the visibility phenomenon, to the best of our knowledge
a surface evolution technique for increasing visibility, in a
local manner, with respect to a user’s external viewpoint
has never been proposed. This is particularly applicable to
the cortex of the brain. Unfolding the cortex has received
much attention (Fischl et al. 1999; Carman et al. 1995;
Wandell et al. 2000) in the medical imaging community,
since the cortex is highly convoluted and therefore difficult
to visualize in folded regions. In this work, we construct a
visibility measure and a technique for gradually increasing
a surface’s visibility from a given viewpoint.

Several surface flattening methods that evolve a surface
for the purpose of visualization have been proposed in the
past. However, traditional surface flattening techniques are
global, with no dependence on the user’s viewing point ex-
ternal to the surface itself, and most of these global tech-
niques (with a few notable exceptions such as Hermosillo et
al. 1999) do not produce an evolution of the surface itself
that can be interactively halted as soon the desired level of
visibility is achieved (which typically does not require full
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flattening of the surface). As such, due to both the global na-
ture and the full flattening effects of traditional techniques,
much more distortion is incurred than necessary, especially
if the user is interested in viewing only a localized part of
the surface. An example in which a surface is unfolded is
the work of Hermosillo et al. (1999), which proposes area
and volume preserving normalized mean curvature flows to-
gether with a tracking framework that can be used to unfold
the cerebral cortex via level set methods. This work, which
is a 3D extension of the work by Sapiro and Tannenbaum
(2005), provides the smoothing of a closed surface without
shrinkage. Recently, a more general approach for surface
unfolding was proposed by Pons et al. (2004) in which an
application-specific normal motion is used to evolve a corti-
cal surface while a tangential motion is used to preserve its
area.

It is important that our surface visibility technique pre-
serve the topology of the surface, e.g., for cortex unfolding
this is crucial since the cortex is known to have a simple
topology. Since the topology is not automatically preserved
during our visibility maximization evolution, we design and
add a 3D topology-preserving term into the evolution.

A number of researchers have endeavored to incorporate
various topology preservation constraints into their evolu-
tion models for the purpose of segmentation. Some authors
such as Han et al. (2001, 2003) have proposed discrete rep-
resentation dependent constraints that kick in at the moment
and at the location where a topology change is about to oc-
cur in order to enforce the original topology. Others, such as
Unal et al. (2005), Slabaugh and Unal (2005) have directly
added continuous evolution forces that increase toward in-
finity as the contour or surface configuration approaches a
change in topology. Sundaramoorthi and Yezzi (2005) re-
cently introduced a variational method for topology preser-
vation in active contours based on knot energies (O’Hara
1991; Abrams et al. 2003).

For many segmentation applications, the manner in
which the topology constraints are introduced is often unim-
portant since only the final configuration of the contour mat-
ters. Here, however, we consider an application of corti-
cal unfolding in which the evolution itself is important to
the end user who will typically wish to stop the unfolding
process at any given time to obtain the desired level of un-
folding. Therefore, the nature of the topology preservation
should go hand-in-hand with the desired unfolding evolution
and not yield undesirable transient geometric configurations
that are often common when using mere topology enforce-
ment.

The extension of the global knot-energy based topology
regularizers proposed in Sundaramoorthi and Yezzi (2005)
to three dimensions is conceptually straight-forward but
mathematically and computationally much more involved
than the original 2D formulation. However, our effort seems
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to have been well justified since these types of topology pre-
serving energies are ideally suited to our cortical unfolding
application. The resulting evolution forces, on their own, in-
duce an unfolding effect that tends to drive the initial corti-
cal surface towards a final spherical configuration that glob-
ally minimizes most knot energies (see Abrams et al. 2003
for the case of curves). This renders a very natural and vi-
sually pleasing global unfolding effect. Since knot-energy
based topology preservation forces already produce a global
unfolding effect on their own, they combine very naturally
with our visibility-based flows to maintain a constant topol-
ogy without introducing undesirable artifacts into the evolu-
tion.

Our goal is a viewpoint dependent unfolding of the cortex
in which the user is able to select an area of interest on the
cortical surface for visualization. By focusing the unfolding
on a region of interest with respect to a chosen viewpoint,
distortion effects may be significantly reduced compared
with global flattening techniques (Hermosillo et al. 1999;
Angenet et al. 1999; Pons et al. 2004) commonly used in
brain mapping. To accomplish this, we introduce a novel
energy functional and gradient flow to measure and improve
the average visibility of the selected region. Without topol-
ogy preservation, however, this flow is not useful for the pur-
pose of cortical visualization and unfolding.

The remainder of this article is organized as follows. In
Sect. 2 we review the two dimensional knot-energy based
topology preservation method introduced in Sundaramoor-
thi and Yezzi (2005). In Sect. 3 we outline the extension of
this method to three dimensions. In Sect. 4 we propose a
method that uses a tree structure of the faces of a triangu-
lated surface and a recursion technique to significantly im-
prove the computational speed of the 3D topology preserva-
tion method presented in Sect. 3. In Sect. 5 we present our
viewpoint-based visibility energy functional and its corre-
sponding gradient flow to which this 3D topology preserva-
tion method will be applied. It is important to note, however,
that without the topology constraint, the visibility-based
flow often undergoes intermediate topology changes during
the resulting cortical unfolding process. As such, while the
visibility energy provides the driving force behind our flow,
the topology forces are indispensable to this application. Fi-
nally, in Sect. 6 we show simulations on both synthetically
created surfaces as well as cortical surfaces extracted from
real data.

2 Background on Topology Preservation

In many active surfaces applications it is very important
that the topology of the object does not change during the
evolution. For instance, when the cortex of the brain is be-
ing segmented it is necessary to keep its topology during
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the evolution because the cortex is homeomorphic to a two-
dimensional sphere (Han et al. 2001, 2003).

Several topology preservation methods have been pro-
posed in the past. Han et al. (2001, 2003), in their work
on cortical segmentation, presented a technique to prevent
topology changes when the active contour evolution is im-
plemented via level sets methods. In this work, changes in
topology at grid points are detected by deriving a condition
based on the configuration of the level set function in a small
neighborhood of the grid points. This method has the disad-
vantage of being highly dependent on the grid spacing used
in the level set function. In addition, when this method is
used the resulting motion may be abrupt and look unnatural.
Segonne (2008) designs an extension to Hans et al., based
on the same principles, that produces more geometrically
accurate segmentation.

Unal et al. (2005) proposed a novel approach for topol-
ogy preservation for active polygons. In this work, it is as-
sumed that the polygon consists of a uniform charge distrib-
uted along its perimeter. Each vertex is then moved in the di-
rection of the electrostatic force, which is computed numer-
ically. Even though this method may prevent some topology
changes, it does not prevent two adjacent sides from touch-
ing. Moreover, the flow is unstable as the number of vertices
increases and the length of the segments decreases (Unal et
al. 2005).

Sundaramoorthi and Yezzi (2005) have proposed a robust
topology preservation technique in which an special geo-
metric flow is added to the original image-based curve evo-
lution to avoid intersections. This geometric flow, which is
derived from the minimization of an energy based on elec-
trostatic principles, affects significantly the original evolu-
tion only when the contour is close to a change in topology.
Unlike a curvature regularizer, when the regularizer pro-
posed in Sundaramoorthi and Yezzi (2005) is applied to a
point the resulting force depends globally on all other points
of the curve. This technique, which is based on the work in
O’Hara (1991), Abrams et al. (2003), has the advantage over
the one proposed in Han et al. (2001, 2003) of changing the
original evolution in a gradual manner. Moreover, it is not
restricted to level sets and can be used on any active contour
implementation.

Other variational approaches for topology preservation
are found in the work by Shi and Karl (2004), which only fa-
vors the repulsion of different connected components of the
evolving curves, and in the work of Alexandrov and Santosa
(2005) and the recent work of Le Guyader and Vese (2007),
both of which are designed specifically for level set methods
(Osher and Sethian 1988).

Since the 3D topology preservation method we are
proposing in this paper is an extension of the work in Sun-
daramoorthi and Yezzi (2005), in the rest of this section we
present a quick review of this work.

2.1 Differentiable Contour Case

Let C € R? be a twice-differentiable contour of length L
and let E;p g be the energy of an uniform charge distributed
along C defined by

E>p r(C)

1 1 1
= — — dsds, 1
2//cXc<||C(s)—C(§)|| dc<s,§)) s,

where d¢ (s, §), the geodesic distance along the curve C
from point C(s) to point C(5), is used to eliminate the infi-
nite component of the first term, thereby making the energy
finite. However the gradient of this energy has the prop-
erty of still becoming infinitely large whenever the curve
becomes close to self-intersection.

Using the Calculus of Variations, it is shown in Sun-
daramoorthi and Yezzi (2005) that the gradient of (1) is
given by

Rop(s)
. C(s) — C() )
=1 ——————— .N(s)d
si%[/gc@,s) ICo) —cp O
_|_/ d—glc(s)—ln<£)K(S):|N(S)
Be(es) IC(s) —C@| 2¢ ’

@

where B¢ (g, s) = {C(S) : dc (S, s) > €} represents the set of
all points in C except for those within a small neighborhood
of C(s), and « (s) and N(s) represent the curvature and the
inward normal of C at the point C(s), respectively. The first
term in (2) can be regarded as the projection of the electric
vector field of the charge distribution at the point C(s) onto
the inward normal N. On the other hand, the second term
can be regarded as the electrostatic potential of the charge
distribution at the point C(s).

Now, let us suppose that C is evolved according to the im-
age based flow C; originai () that is uniformly bounded. Sun-
daramoorthi and Yezzi (2005) show that if the flow Ryp(s)
in (2) is added to C; original (s), then the topology of C will
be preserved during the evolution. That is, the resulting flow

Cronew(s) = Ct,original(s) + nrRop(s), 3)

where ¢ is the artificial time variable and g is a positive
constant, preserves the topology of C. Moreover, since (3)
is a geometric flow, this method of topology preservation
is suitable for both parametric particle-based and level set
implementations.

2.2 Polygon Case

Let P be a polygon with N edges C; fori € {1, ..., N}, each
one of length |C;| and going from vertex v; to vertex v;1,
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both in R?. In addition, consider the electrostatic energy

Exp gr(P) = 2Z<|Ci|1n|ci| —|Cil)

dsds
4
T3 Z//cw co-gor @

where the first term results from taking just the finite part of
the integral [J, ixc, HC(;‘?+(YI(§)H and discarding the infinite
component. Like the energy for the differentiable contour
case (1), this energy only becomes infinitely large when the
polygon approaches a topology change.

Let Rop « (¢)be the gradient descend flow of (4) for vertex
Vi at time ¢ that is computed by the procedure outlined in
Sundaramoorthi and Yezzi (2005) and let (dvi /dt)original be
the original image based vertex flow. Sundaramoorthi and
Yezzi (2005) show that the new vertex flow

<dvk > .
dt new

has the property of preserving the topology of P during the
evolution.

dvy
(—) T R () s)
dt original

3 Topology Preservation in 3D

We now present the extension of the work in Sundaramoor-
thi and Yezzi (2005) to both active surfaces and active poly-
hedrons, making more emphasis on the latter since we will
apply this in the next section.

3.1 Differentiable Surface Case
Let S:[0,11x[0,1]1—> R3bea parameterization of a dif-

ferentiable, closed, compact and orientable surface, then the
natural 3D extension of (1) is

1
Esp.(5) = //gxs[nsw, v) — S(, 0)|I?

dSds, (6)

(), (ﬁ,ﬁ»]

where ds((u, v), (1, )) is the geodesic distance along the
surface S from point S(u, v) to point S(i, v). However, un-
like the case of curves, the second term is not straightfor-
ward to compute numerically nor is the variation easy to
compute. Therefore, we consider the cut-off energy

1
Eoe = [ waoosaaEs O

where B, = {(4,0) € [0, 11%: lu—i| > eV |v—10| > &} rep-
resents the set of all the points of S except for a small neigh-
borhood around the point S(u, v).

@ Springer

A formal computation using the Calculus of Variations
shows that the limit of the gradient of (7) converges and that
it is equal to

R3p(u, v)
S(u, v) —S(#, D)
. N(u,
€—>0+{/‘/y(s)|:||S(u,v)—S(u’v)”4 (u,v)
H(u,v) .
IS(u, v) — S, ﬁ)”z]ds(% U)}N(u, v), 8)

where H(u,v) and N(u, v) represent the mean curvature
and the inward normal of S at S(u, v). We believe that R3p
becomes infinite as the surface approaches self-intersection
and points in a direction opposite to self-intersection, as
in the case of curves. We offer experimental evidence in
Sect. 6.

3.2 Triangulated Surface Case

Topology preservation methods can also be applied to ac-
tive polyhedrons, that is, a polyhedral surface whose vertices
evolve to minimize some energy functional. In this sense,
Slabaugh and Unal (2005) have proposed a 3D extension of
the work in Unal et al. (2005) by adding an electric force
to each vertex flow. This force is computed by creating an
electric field that goes to infinity as a vertex moves towards
the surface. Unfortunately, this method does not guarantee
topology preservation between non-adjacent triangular faces
and becomes unstable as the triangular mesh becomes finer.
This is especially true for our novel cortical unfolding ap-
plication that we present in the next section, which needs
topology preservation to work properly. Therefore, we de-
cided to choose a direct energy-based approach based on
Sundaramoorthi and Yezzi (2005), which although slower,
provides a more powerful topology preservation factor.

Let S be a triangulated surface with N faces S; for
i €{l,...,N}. Let also v,, vp, and v, be the vertices of §;,
ordered counterclockwise, as shown in Fig. 1. Now consider
the new energy

N N
Expr=Y_ Y Eg, €))

i=1 j=1,j#i

Fig.1 Sample triangle S; for a Vb N
triangular mesh

)(
Va ac
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where E3p g, ; represents the electrostatic energy between
the faces §; and §;. More specifically, E3p, Ri is defined by

1
E3D,R,..=// 4SS, (10)
N sixs; ISi —S;lII? e

Accordingly, the gradient of the proposed energy in (9) be-
comes infinitely large when any two faces become infinitely
close.

Taking the derivative of E3p g with respect to the vertex
v, of S; gives us

227
N N
aE?,D R 8E3D,R,’j
RS LA _— 11
v, Z ._Z . vy (an
i=1j=1,j#i
Furthermore, if we use the parameterization
Si(u, v) =vq +u(vp — Vo) + v(Ve — Vq), (12)

for u € [0, 1] and v € [0, 1 — u], then it can be shown that
the derivative of E3p, Ri with respect to v, in (11) when S;
and §; are non-adjacent becomes

9E N 1 pl—u pl pl—id
St sy [ [T - u- o dbaidua
v, 0 Jo 0 Jo

1 1—u p1 pl—i 1 OA;:
+4A; / / / / — —didiidvdu—-, where (13)
o Jo JoJo ISi(u,v)—8;@@, 0 Vg

1
A; =5||(Vb—va) X (Ve = V)l (14)

is the area of S; and the force vector F; ; is given by
Fij = (Si(u,v) —S; @, 0)/IISi u,v) — S;@, »)*.  (15)

If S; and S are adjacent, then the derivative of E3p g; i with
respect to v, is different from (13). Without loss of general-
ity, let us assume that S; and S; share at least the vertex v,
in Fig. 1. It can be verified that

9E N 1 pl—u pl 1—a
J73D.Rij :—SAiAj// / / (@ +0—u—v)F,; jdodidvdu
Vg 0 Jo 0 Jo

1pl—u pl 1—a 1 aAi
+4A<// / / ——dvdudvdu
TJodo  Jo Joo 1ISiGu.v) =S, D)2 v

1 pleu pl pl—i .
1 N Y

+4Ai// // ——>dvdudvdu ,
0o Jo o Jo  ISi(u,v) =S;(,v) v,

for F; ; defined as in (15). (16)

Although the computation of (16) implies the numerical
solution of quadruple integrals, we can reduce the number of
computations by solving it explicitly just when the two faces
S; and S are close enough, that is, when they are within a
certain thresholded distance from each other, which is when
it matters the most. On the other hand, when the faces are
not considered to be close enough we can then use their cen-
troids, which we called S,- and S j»in (10). The result is the
much simpler estimate

IEspR,; 2, Si —S; Aj  0A;
SIS =S4 IS = Sj1I? 9va

7)

ve 3"
Again, if we add the vertex motion as defined in (11), to

a surface-based evolution then the topology of the surface
will be preserved during the evolution.

4 Recursive Computational Implementation for
Topology Preservation

The topology preservation method presented in the previ-
ous section is very robust, but at the same time is com-
putationally intensive as it involves a significant amount
of computations for each possible pair of triangles of the
evolving surface. That is, for each vertex, we must com-
pute the force contribution from each triangle of the en-
tire surface mesh. Even if we use the simplified expres-
sion in (17) to estimate the topology preservation forces
when triangles are far apart, the resulting number of com-
putations would still be large, especially considering that
3D triangulated surfaces usually have thousands of trian-
gles.
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We could increase the speed of the computation of the
topology preservation forces of a triangle with respect to the
rest of the surface by grouping triangles that are far away
and then using (17) to estimate the topology preservation
forces with respect to the group of triangles as a single unit.
A natural way of doing this grouping is by creating a tree
data structure, where each node of the tree has a unique
identification number, a centroid, an area, a list of neigh-
bor nodes, a list of the identification number of its child
nodes, and the identification number of its parent. We can
then use a recursion technique to approximate the topol-
ogy preservation forces for each triangle of the evolving sur-
face.

One way we can create this tree data structure is by
grouping neighbor nodes (i.e., nodes that share at least one
vertex) two at a time, prioritizing those neighbor nodes that
are closer to each other. Every time we merge two nodes
we then create a new parent node whose area is the total
area of its child nodes and whose centroid is the weighted
average of the centroids of its child nodes. A more de-
tailed explanation of the merging process is described be-
low

Merging Algorithm

[STEP 1] Set all triangles as nodes, assign them a unique
node identification number, and store the corre-
sponding centroids and areas in each node. Tag
all the nodes as UNMERGED. This set of nodes
form the bottommost level of the tree.

[STEP 2] For each node tagged as UNMERGED, find the
UNMERGED nodes that are neighbors and store
their node identification numbers in a list of
neighbors contained in the node.

[STEP 3] Compute the distance between each node and
each one of its neighbors and put the information
in a heap sorted by the distances.

[STEP 4] Grab the pair of neighbor nodes from the top of
the current heap, that is, the two closest neigh-
bors. If any of the nodes is tagged as MERGED,
then go to [STEP 4], otherwise tag them as
MERGED and merge them by creating a parent
node whose area is the sum of the two node ar-
eas and whose centroid is the weighted average of
the two centroids. Create a list of child nodes in
the parent node and store the parent identification
number in each of the child nodes. Tag the parent
node as UNMERGED. If the end of the current
heap has been reached go to [STEP 5], otherwise
go to [STEP 4].

[STEP 5] Create a new heap sorted by distances with the
elements of the previous heap that have one node
tagged as UNMERGED.
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[STEP 6] Grab the pair of neighbor nodes from the top
of new heap and add the node tagged as UN-
MERGED to the list of child nodes of the par-
ent node of the node tagged as MERGED. Tag
the UNMERGED node as MERGED and update
the area, the centroid, and the list of child nodes
of the parent node. Store the number identifica-
tion of the parent node in the child node. If all the
nodes in the heap has been tagged as MERGED
go to [STEP 7], otherwise go to [STEP 6].

[STEP 7] Stop if the number of UNMERGED nodes is
equal to one; else go to [STEP 2].

Storing the parent identification number in its child nodes
is very useful when finding the neighbor nodes in [STEP 2].
That is, if we want to find neighbors of a given parent node
we just need to find the identification number of the parent
nodes of the neighbor nodes of the child nodes of the given
parent node.

Figure 2(a) depicts a tree structure for a surface contain-
ing nine triangles. As can be seen, in the bottommost level
of the tree we have the original nine triangles of the surface.
After going from [STEP 1] to [STEP 7] we have the first
level of new parent nodes (nodes 10 to 13). We can see that
even though most of the parent nodes have only two child
nodes, it is still possible to have more child nodes. That is
the case of node 11, which has three child nodes (nodes 3
to 5). The reason for this is that even though we want to have
two child nodes per parent node, this is not always possible
due to the structure of the triangulation of the surface. After
going from [STEP 1] to [STEP 7] another time we have only
two new parent nodes (nodes 14 and 15). Finally, after going
from [STEP 1] to [STEP 7] for the last time, the algorithm
produces only one new parent node, node 16, which is called
the root node. It comprises all the triangles of the surface.

We can exploit the tree structure for the estimation of
the topology preservation forces by using recursion as fol-
lows. Say for instance that we want to compute the topol-
ogy preservation forces for the vertices of a particular trian-
gle with respect to a node that does not contain the triangle
and that has two or more child nodes and many more nodes
below it. One thing we can do is to estimate the topology
preservation forces by using (17) and the centroids and ar-
eas of both the triangle and the parent node. We can do ex-
actly the same thing with each one of the child nodes. We
can then compare the results to determine whether or not
more accuracy is needed. If the average relative error of the
result obtained using only the parent node with respect to
the sum of the results obtained by using each child node is
less than or equal to some chosen value, then we can say that
the approximation is good enough and, as a result, we can
assume that the sum the topology preservation forces with
respect to the child nodes is a good approximation of the
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Fig. 2 Changes in the tree
structure. (a) Original tree
structure. (b)—(c) Resulting tree
structures when computing the
topology preservation forces
with respect the nodes 1, 4,

and 6, respectively

1y © O
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(b)
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(c)

topology preserving forces with respect to all the triangles
below the parent node. If instead, the average relative error
is greater than the chosen value, then we have to repeat the
process again with each one of the child nodes, where this
time they would be consider as parent nodes of some other
child nodes.

This recursion technique gives us a very powerful re-
source as we are estimating topology preservation forces
with respect to a group of triangles at a time instead of a
triangle at a time. Moreover, it automatically decides when
more accuracy is needed.

We can also increase the accuracy of the computation
of the topology preservation forces by explicitly computing
them when they matter the most, that is, when two triangles
are very close or when and they are neighbors. For those
cases we would use (13) and (16). The resulting algorithm,
which is fast and at the same time accurate enough, is de-
scribes in more detail below.

Fast Algorithm to Compute Topology Preserving
Forces

For each triangle of the surface do the following:

[STEP 1] Tag all nodes in the tree as UNVISITED, except
for the selected triangle, which is in the bottom-
most level of the tree.

[STEP 2] For each one of the nodes in the bottommost
level of the tree that are within a thresholded dis-
tance from or are neighbors of the selected trian-
gle compute the accurate topology forces for its
vertices by using (13) and (16), respectively. Tag
those nodes as VISITED.

close

(d)

Nelgtbor

[STEP 3] For each one of the nodes tagged as VISITED
follow their paths to the root node, the topmost
node, and tag as VISITED all the parent nodes in
the paths.

[STEP 4] Select the UNVISITED node with the highest
identification number and compute the topology
forces for the vertices of the selected triangle with
respect to this node and all the nodes below it
by using recursion and the estimation formula
in (17). Add the results to the overall topology
forces for the vertices of the selected triangle. Tag
all these nodes as VISITED.

[STEP 5] Stop if all nodes are tagged as VISITED; else go
to [STEP 4].

Figure 2 shows several examples of how this algorithm
works. In Fig. 2(b) it is shown the resulting tree when com-
puting the topology preservation forces of the surface with
respect to node 1, which is shown in gray. In this case we just
need to compute the topology preservation forces accurately
once, for node 2, which is the only neighbor node that node 1
has. We then have to use recursion to compute the topol-
ogy preservation forces starting with node 15. Of course,
in the case of node 11, it makes more sense just to com-
pute the topology preservation forces with respect to each
of the nodes 3, 4, and 5 by using (17). Figs. 2(c) and 2(d)
show the resulting tree structures when node 4 and node 6
are selected. As can be seen, different tree structures can re-
sult. However, they can be easily obtained from Fig. 2(a) by
deleting the nodes that are in the paths from the neighbor
nodes of the selected node to the root node (node 16) and
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from the nodes that are close enough to the selected node to
the root node.

As itis going to be seen Sect. 6, the improvement in speed
by using a tree structure and a recursion technique can be
enormous.

5 Application to Cortical Unfolding

In this section we present a novel viewpoint-based visibil-
ity energy as the basis for a class of flows with appropriate
geometric constraints that can be used to maximize the visi-
bility of a surface with respect to a fixed external viewpoint.
The proposed energy—which was previously presented in
Rocha et al. (2007) and is described in more detail here—
cannot work by itself, as it requires topology preservation.

The main purpose of the method we propose here is to
allow one to inspect a surface interactively from different
viewpoints and perform unfolding locally with a continu-
ous surface evolution that depends upon the user’s current
external viewpoint rather than global unfolding or flatten-
ing of the entire surface. This approach has the advantage
of producing less distortion in the specific area of interest as
well as allowing the user to interactively determine the exact
level of unfolding desired. To achieve this goal, we propose
a viewpoint-dependent visibility energy from which we de-
rive a gradient surface evolution with appropriate geomet-
ric constraints. The result is a continuous unfolding of the
surface with respect to the user’s external viewpoint which
allows the user to view the deeper self-occluded structures
of the surface. This result can have several applications in
the area of medical imaging. For instance, it can be used in
human brain mapping to unfold a specific part of the cere-
bral cortex while introducing little distortion or to visually
explore and validate the deep sulcul structures extracted by
cortical surface segmentation algorithms. In addition, it can
have a number of applications in computer graphics. For ex-
ample, it can be used for the visualization of complicated
surfaces and for visual inspection of texture mappings onto
complex geometries.

For the sake of simplicity and better insight into the 3D
case, we begin by describing our framework for visibility
maximization in 2D (i.e. planar contours viewed from an
external point by someone positioned in the same plane).
We then extend the framework in a straight-forward manner
to the 3D case.

5.1 New Visibility Energy Functional for Viewpoint-Based
Unfolding: The Flux Model

The problem of maximizing the visibility of a contour with

respect to a fixed viewpoint can be thought as the problem
of maximizing the flux of light that is being absorbed by a

@ Springer

contour due to a light source at a given viewpoint. In Fig. 3
the contour C is absorbing the light coming from the view-
point P, which is acting as the source of light. The part of
C that goes from point a to point b and contains the points
c,d,e, f, and g is absorbing all the rays coming from P.
From now on, we will refer to this region as the region of
interest of the contour. In the figure we have used a natural
criteria for choosing this region by finding the two points of
C that are intersected by the extremities of the viewing re-
gion and then selecting the portion of C that passes through
these two points. This procedure can be done automatically,
but it is out of the scope of this work.

In the proposed flux model the objective is to evolve the
region of interest of the contour in such a way that the aver-
age flux it receives is maximized. In order to do this, we first
need a way to quantify the amount of flux received at any
point in the contour. For instance, in Fig. 3 both the points g
and f receive light from P. However, we might argue that
points in the neighborhood of point g are receiving more
light than points in the neighborhood of point f. This occurs
because the rays arriving at point g are almost perpendicular
to the contour, whereas the rays arriving at point f are al-
most tangent to the contour. We define the flux at any point
in the contour as the Euclidean dot product between the unit
ray that is coming from the viewpoint and the unit inward
normal of the contour at the given point. Accordingly, the
value of the flux at any point will always be between —1
and 1. This approach provides a physical interpretation of
how illuminated any point in the contour is. If a point is illu-
minated, that is, if it is visible from the viewpoint, a positive
flux indicates the degree of perpendicularity of the incoming
ray. For instance, in Fig. 3 the flux at point g is greater than
the one at point ¢ because the ray of light is more perpendic-
ular to the contour at the former than it is at the latter. On the
other hand, if a point is not receiving any light because the
ray is being blocked by the contour, a positive flux indicates
how perpendicular the ray is going to come in if the part of
the contour that is blocking the ray moves away. This is the

Viewpoint P

i

P

Contour C

Fig. 3 Visibility of a contour C with respect to a viewpoint P
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case of point e in Fig. 3, because even though the point does
not receive any light, it has a positive flux. When a point has
a negative flux, like point d in the figure, it means that the
point is not receiving any light. The more negative the flux
is, the more the point will have to move to receive light.

The average flux, which we call E>p(C), can be com-
puted by integrating the flux at all the points in the region of
interest of the given contour and then dividing by the total
length. That is,

Ex(C) = ~ /L €O =P Nesyds (18)
P L ICe P ’

where L is the length of the region of interest of the con-
tour C. From now on, we will use the terms “average flux”
and “average visibility” interchangeably. We need to point
out a very important feature of the energy in (18). If we
evolve the contour according to the gradient ascent along
this energy, then the points where the flux is negative would
be forced to move in such a way that the flux they receive in-
creases. By doing so, these points make visible other points
that already have a positive flux, but are not visible from the
viewpoint. This generates the unfolding motion that is de-
sired. Since the flux at any point can be at most equal to 1,
then E,p(C) also has a maximum of 1. This would occur
when the viewing surface coincides with a circular arc with
the viewpoint P as its center. In this case, the rays coming
from the viewpoint would have the same direction as the
unit inward normal at each point and, consequently, the flux
at every point in the region of interest of the contour would
be equal to 1. Moreover, in this case all points would have
the same flux. Therefore, maximizing the average visibility
will, by itself, promote an equal distribution of light along
the region of interest of the contour.

Using the Calculus of Variations it is not difficult to show
that the gradient ascent for the energy in (18) is

1 1
Ci(s) = I (K(S)Ezn(C) + m)N(S), 19)

where « (s) is the curvature of C at the point C(s). This gra-
dient shows that the problem is well-posed and that we can
use our model to maximize the visibility of piece of con-
tour only if the initial average visibility with respect to P is
positive (otherwise a backwards heat flow results).

Now we construct the average visibility measure for a
polygon (illustrated in Fig. 4). As can be seen in the figure,
the region of interest of the polygon comprises N edges and
goes from vertex v; to vertex vy41. By applying (18) we
obtain that the average visibility of the region of interest of
the polygon, Eop, p, is

N
1
Exp,p = r > Eap,i. (20)
i=1

231
3
Region of Interest
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\ Polygon P Yo
Fig. 4 Visibility of a polygon with respect to a viewpoint P
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where L7 = |C{|+---+]C1] is the total length of the region
of interest of the polygon, ¢; = 1/|C;|(Vix+1 — Vi) - (v; — P),
and E»p ; is the total flux received by the edge C;.

The motion of the vertices to maximize the average vis-
ibility in (21) can be computed by taking the partial deriva-
tives of Eop_p with respect to each of the vertices and taking
into consideration that the edges Cy and Cy_1, as well as the
energies Eop x and Eop k1, are the only expressions in (21)
that depend on the vertex v fork = {1, ..., N+ 1}. Thus we
get

dvy d0Eop, p
dvi _ P 22
7, = hap Ve (22)
for
dEw.p _ Eop.p (Vi = Vitl 4 Ve Vit
oVy Lt Ik k-1
1 [(9Ew n 0E7D k-1 ’ 23)
Lt oV vy

where wop is a positive constant, and ¢ denotes an artificial
time variable. Since the visible region of the polygon goes
from v; to vy41, then the value of the partial derivative of
Eop —1 with respect to v is O for k = 1. Similarly, the value
of the partial derivative of Eop ; with respect to v is also 0
fork=N +1.

When the vertices of the region of interest of a given
polygon are evolved according to (23) so that the average
visibility is increased, we have to make sure that the topol-
ogy of the polygon does not change throughout the evolu-
tion. In other words, we have to restrain the edges from in-
tersecting with each other. To do this, we add the gradient
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Fig.5 Visibility maximization evolution for a highly convoluted poly-
gon

descend of the electrostatic energy (4) to the result in (23),
just like it is done in (3).

In order to have an average visibility equal to 1, the re-
gion of interest of the contour of a polygon has to have a
visibility equal to 1 at every point of every one of its edges.
It is easy to see that this only occurs when all the edges
collapse to a single point. This is exactly what would occur
if we evolve the vertices of the polygon according to (23).
Of course, this result is undesirable. To overcome this issue
we need to maximize the average visibility and, at the same
time, maintain the length of the edges constant. This can
be done by considering only the component of the gradient
in (23) that does not change the length of the edge. The pro-
cedure to compute the constrained gradient is very similar to
the one used in Witkin and Baraff (1997), Cantarella et al.
(2004), Iben et al. (2006). Details of this procedure will be
discussed in Sect. 5.4, when we show how to preserve the
area of an evolving surface.

Figure 5 shows the proposed visibility maximization evo-
lution when the initialization is a convoluted 34-edge poly-
gon. Initially the polygon has an average visibility of just
0.17. As the proposed algorithm was applied, the polygon
unfolded to make visible sections that were previously not
visible. At the end of the simulation the average visibility
was almost equal to one, and the total length of the region of
interest was virtually preserved.

The importance of length preservation can be inferred
from the results shown in Fig. 6. In this case the proposed
approach was applied to the same polygon as the one in
Fig. 5, but this time without enforcing length constraints.

@ Springer
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Fig. 6 Visibility maximization without length preservation

Fig. 7 Visibility maximization without topology preservation. (a) Ini-
tial polygon. (b) Polygon after 10 iterations. (¢) Polygon after 100 it-
erations

The result is the region of interest of the contour shrinks it-
self conveniently to increase the average visibility. Indeed,
the length of the visible region decreased from 723.70 pix-
els to just 205.41 pixels as the number of vertexes decreased
from 34 to 13 and the average visibility increased from 0.17
to almost 1. As a result, even though the visibility was maxi-
mized, we did not get the unfolding effect that allows the oc-
cluded sections in the visible part of the contour to be seen.

Figure 7 shows the necessity of topology preservation.
In this simulation we applied the proposed algorithm, with-
out the topology preserving forces, to the highly convoluted
polygon of Fig. 5. As can be seen, the edges intersect each
other after a few iterations. The changes in topology were
even larger as the number of iterations increased.

5.2 Differentiable Surface Case

The proposed method of maximizing the visibility of a con-
tour with respect to a viewpoint can be easily extended to
3D. That is, we can use the same approach to maximize the
visibility of a surface with respect to a viewpoint.

Let S be a differentiable surface and let S, be a selected
region of interest on S that the user would like to unfold for
visualization. Consider the energy

E (S)—L// S=P Nds (24)
P A M is=e

where Ag, is the area of S, S € R3is a point in the sur-
face, and N € R is the unit inward normal at S. This energy
represents the average visibility S, with respect to P.

If we evolve S, according to the gradient ascent of (24),
then the points where the flux is negative would be forced to
move in such a way that the flux they receive increases. By
doing so, these points would make visible other points that
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already have a positive flux, but are not visible from P. This
would generate the unfolding motion that we are looking for.

Using the Calculus of Variations, it can be shown that a
maximizing gradient flow for (24) is given by

1 1
S = A_U<HE3D(SU)+ ||S—P||>N’ (25)
where H represents the mean curvature of S, at the point S.
Like in the 2D case, this result gives us the main formu-
lation in case we want to implement the proposed method
for differentiable contours. In addition, it provides us with
a mathematical criterion that tells us which part of the sur-
face we can flatten. Specifically, this stability condition is
that we must choose the portion S, of the surface to have a
positive initial average visibility with respect to P. This may
be done by enlarging or reducing the initial region S, until
this condition is satisfied. As the surface unfolds, the aver-
age visibility of S, would increase, thereby allowing a user
to select a smaller subset of S, at later stages.

5.3 Triangulated Surface Case

Let S be now a triangulated mesh and let S, be a section
of S with N triangles and a positive average visibility with
respect to the viewpoint P. By applying (24) to S, we get
that the average visibility of S, E3p,p, is

E3p p(S) = Z E3pi, (26)

where Ag, = Ag, + --- + Ag, is the total area of §, and
Esp,; represents the total flux being received by the triangu-
lar face S; of area A;. Accordingly, E3p; is

E // Si =P Nds: 27)
3D,i — l”S —P” is

where the inward normal N (Fig. 1) is given by

(Vb = Va) X (Ve = Va)
(Vs = Va) x (Ve = Vo)l

(28)

If we use the parameterization in (12), then it can be shown
that (27) becomes

Esp, = li /0 1 1n<lgc(1 _ﬂ”i:lff yl‘“’)du, (29)
where [, is the length from vertex v, to vertex v,

a=—(Vg—P)- (Vg X Vp +Vp X Ve + Ve X V), (30)
B=(Ve—=Va) - (1 —u)Vq +uvy —P), 3D
y = lluvy + (1 —u)ve —PJ, (32)

and
§=[(1 —u)vg +uvy —P|. (33)

Taking the derivative of E3p; with respect to the vertex
v, we get

IEp;  « ‘{(2(1 — 1) +¥/lac) (Va — Ve) + 3B/8Va
vy lac Jo

lac lgc(l_u)‘i'ﬂ"‘ylac

_ 0B/0Vy +14c08/0Vg + 8/ lac (Vo — Vc)i|du
B+ 8lac

+ E3p,i Ja(@a/dVe —a/l2.(Va — Vo), (34

where the partial derivatives of «, B, and § with respect to
vertex v, can be obtained from (30), (31), and (33), respec-
tively. On the other hand, if we take the derivative of (26)
with respect to v, we get

N-1
dE3p,p(S) 1 Z (3E3D,i 3Ai> (35)
vy As, =\ 0va Vo)

Using these results together with those of the previous
section we have that the vertex motion that maximizes the
average visibility of S, (26), while preserving its topology,
is given by
dv, d0E3p, p 0E3p R
T U3D v, + URr v,

; (36)

where p3p and ppg are positive constants and the sec-
ond term is the topology preserving term computed by us-

ing (11).
5.4 Area Preservation

In order to have an average visibility equal to 1, the region of
interest S, in the triangulated mesh S has to have a visibility
equal to 1 at every point of every one of its faces. Similar to
the 2D case, it is easy to see that this only occurs when all the
faces collapse to a single point. To overcome this problem
we need to maximize the average visibility and, at the same
time, maintain the area of each one of the triangular faces
of S, constant. This can be done by applying a similar tech-
nique such as the one employed in Witkin and Baraff (1997),
Cantarella et al. (2004), Iben et al. (2006) in which only the
component of the gradient that does not change the area is
used to evolve the vertices. This procedure is described be-
low.

Let W = {vy,..., vy} be the ordered set of the M 3D
vertices comprising S,. In order to maintain a constant area
for each of the triangular faces S; in S, during the evolution

@ Springer



234

Int J Comput Vis (2009) 85: 223-236

R A <

Fig. 8 Unfolding of a synthetic triangulated surface using the proposed visibility maximization approach

we need to satisfy the following N constraints
L — v v VR— A2
) ”(Vl,b Vz,a) X (Vt,c Vz,a)” Al‘ =0, 37

where i € {1, ..., N} and the vectors v, 4, V; , and V; . rep-
resent the corresponding vertices of S; (see Fig. 1) in W.
Using Lagrange multipliers one can obtain

Vie=Viu—J, (38)

where V; ,, is the vector of unconstrained gradient flow ob-
tained by applying (36) to each vertex of S, J is the Jaco-
bian matrix of (37), V; . = %[VT .. V};,I]T is the vector of
constrained gradient flow, and the vector I is the minimum

norm solution to the system
JIMI=Jv,,. (39)

Since the matrix JJT is symmetric positive definite, then
I can be quickly computed using the conjugate gradient
method. Moreover, since J is sparse, the matrix multipli-
cation JJT can be computed and stored efficiently.

6 Simulation Results

Figure 8 depicts the evolution of a 3D synthetic surface
when the visibility is maximized and, at the same time, the
topology is preserved. The initial visibility of this surface
was 0.2, whereas by the end of the simulation it was very
close to 1.

Topology preservation plays a very important role when
maximizing surface visibility for highly convoluted sur-
faces. This is the case of the evolutions shown in Fig. 9,
where two regions of a cortex are evolved over 150 it-
erations so that the visibility with respect to a viewpoint
located just in front of the regions is maximized. Each
of these regions consisted of about 1,500 triangles. Us-
ing the method of topology preservation as described in
Sect. 3 took about 20 minutes per iteration on a 2:53 GHz
computer running Windows. However, using the fast algo-
rithm described in Sect. 4 reduced the computational time
to just 5 second per iterations, which is really promis-
ing.
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Fig. 9 Unfolding of for two different regions of a cortex using visibil-
ity maximization

Figure 10 shows an additional evolution in which one can
clearly see how the selected region unfolds to become more
visible from the external viewpoint.
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Fig. 10 Unfolding of a region
of the cortex using
viewpoint-based visibility
maximization
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7 Conclusion

We have presented a novel method for cortical surface un-
folding based on a viewpoint-based visibility energy and a
three-dimensional generalization of knot energy type forces
for topology preservation. Simulation results show that the
gradient flow of these combined energy terms yields a lo-
calized unfolding that can be used for cortical visualiza-
tion and exploration tailored to the user’s current viewpoint.

We believe this method, compared with more traditional
global flattening techniques, may be very useful for more
customized inspection of cortical surface segmentations.

We have also been able to significantly increase the speed
of the computations for the 3D topology preservation forces
by using a tree structure and a recursion technique. We ex-
pect to use this same method for improving the speed of the
visibility computations. In addition, we are exploring other
ways of reducing the number of computations in order to
make our unfolding approach more user-interactive in real-
time.

Finally, we point out that since what we are proposing
is new and since there is no “ground truth” regarding the
“correct” local unfolding, it is neither clear how we should
compare our approach to other approaches nor what is the
proper way to apply or formulate any quantitative evaluation
metrics.
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