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Abstract
We further develop a new framework, called PDE acceleration, by applying it to calculus of variation problems defined
for general functions on R

n , obtaining efficient numerical algorithms to solve the resulting class of optimization problems
based on simple discretizations of their corresponding accelerated PDEs. While the resulting family of PDEs and numerical
schemes are quite general, we give special attention to their application for regularized inversion problems, with particular
illustrative examples on some popular image processing applications. The method is a generalization of momentum, or
accelerated, gradient descent to the PDE setting. For elliptic problems, the descent equations are a nonlinear damped wave
equation, instead of a diffusion equation, and the acceleration is realized as an improvement in the CFL condition from
Δt ∼ Δx2 (for diffusion) toΔt ∼ Δx (for wave equations). We work out several explicit as well as a semi-implicit numerical
scheme, together with their necessary stability constraints, and include recursive update formulations which allow minimal-
effort adaptation of existing gradient descent PDE codes into the accelerated PDE framework. We explore these schemes
more carefully for a broad class of regularized inversion applications, with special attention to quadratic, Beltrami, and total
variation regularization, where the accelerated PDE takes the form of a nonlinear wave equation. Experimental examples
demonstrate the application of these schemes for image denoising, deblurring, and inpainting, including comparisons against
primal–dual, split Bregman, and ADMM algorithms.
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1 Introduction

Variational problems have found great success and arewidely
used, in image processing for problems such as noisy or
blurry image restoration, image inpainting, image decompo-
sition, and many other problems [2]. Many image processing
problems have the form

min
u

∫
Ω

L(x, u,∇u) dx (1)

where L is convex in ∇u1 and the corresponding gradient
descent equation

1 Nonconvex problems are also widely used, see, e.g., [17].
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ut + Lz(x, u,∇u) − div(∇pL(x, u,∇u)) = 0

is a nonlinear diffusion equation, where L = L(x, z, p).
Solving (1), an elliptic problem, via gradient descent is inef-
ficient, due in large part to the stiff stability (CFL) condition
Δt ≤ CΔx2 for diffusion equations. This has led to the
development of more efficient optimization algorithms, such
as primal–dual methods [9] and the split Bregman approach
[12] that avoid this numerical stiffness.2

Optimization is also widely used in machine learning.
Typically for both modern machine learning and image pro-
cessing problems, first-order methods based on computing
only the gradient are preferable, since computing and storing
the Hessian are intractable [4]. Although this generalization
is with the caveat, most types of machine learning optimiza-
tion problems are often structurally different than in image
processing.

For both machine learning and image processing, discrete
gradient descent is typically written as

xk+1 = xk − α∇ f (xk), (2)

where in machine learning the time step α is called the
learning rate. And although gradient descent is provably con-
vergent for convex problems [5], themethod can be very slow
to converge in practice.

To address this issue, many versions of accelerated gra-
dient descent, typically described as momentum-based
techniques, have been proposed in the literature and are
widely used in machine learning [29]. At some heuristic
level, gradient descent is often slow to converge because the
local descent direction is not reliable on a larger scale, lead-
ing to large steps in poor directions and large corrections in
the opposite direction. The descent is also dependent on the
magnitude of the gradient, which slows or even traps descent
when it is locally flat.

Accelerated descent methods typically incorporate some
type of averaging of past descent directions, which provides
a superior descent direction compared to the local gradient.
One of the oldest accelerated methods is Polyak’s heavy ball
method [18]

xk+1 = xk − α∇ f (xk) + β(xk − xk−1). (3)

The term β(xk − xk−1) acts to average the local descent
direction with the previous direction and is referred to as
momentum. Polyak’s heavy ball method was studied in the
continuum by Attouch et al. [1] and also by Goudou and
Munier [13], who call it the heavy ball with friction. In the

2 Primal–dual and split Bregman also avoid the non-smoothness of
the L1 norm, which is an issue in descent-based approaches and often
requires some form of regularization.

continuum, Polyak’s heavy ball method corresponds to the
equations of motion for a body in a potential field, which is
the second-order ODE

ẍ + aẋ = −∇ f (x). (4)

A more recent example of momentum descent is the famous
Nesterov accelerated gradient descent [16]

xk+1 = yk − α∇ f (yk)

yk+1 = xk+1 + k − 1

k + 2
(xk+1 − xk).

(5)

In [16], Nesterov proved a convergence rate of O(1/k2) after
k iterations for smooth convex problems. This is provably
optimal for first-order methods.

The seminal works of Polyak and Nesterov have spawned
awhole field ofmomentum-based descentmethods, and vari-
ants of these methods are widely used in machine learning,
such as the training of neural networks in deep learning
[25,29]. The methods are popular for both their superior con-
vergence rates for convex problems, but also their ability to
avoid localminima in nonconvex problems,which is not fully
understood in a rigorous sense. There has been significant
interest recently in understanding the Nesterov accelerated
descent methods. In particular, Su et al. [22] recently showed
that Nesterov acceleration is simply a discretization of the
second-order ODE

ẍ + 3

t
ẋ = −∇ f (x). (6)

Other works have since termed this ODE as continuous time
Nesterov [27]. We note the friction coefficient 3/t vanishes
as t → ∞, which explains why many implementations of
Nesterov acceleration involve restarting, or resetting the time
to t = 0 when the system is underdamped [27].

However, it is the work of Wibisono et al. [29] that gives
the clearest picture of Nesterov acceleration. They show that
virtually all Nesterov accelerated gradient descent methods
are simply discretizations of the ODE equations of motion
for a particular Lagrangian action functional. This endows
Nesterov acceleration with a variational framework, which
aids in our understanding, andmore importantly can be easily
adapted to other settings. This frameworkwas extended to the
partial differential equation (PDE) setting by Sundaramoor-
thi and Yezzi in their initial works [23,24,30,31] where the
first set of accelerated PDEs were formulated both for geo-
metric flows of contours and surfaces (active contours) as
well as for diffeomorphic mappings between images (optical
flow).

In this manuscript, acceleration is addressed both in the
continuum (space and time) and for a class of discrete prob-
lems. Our primary intended usage of the term “acceleration”
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Fig. 1 Illustration of gradient descent PDE vs accelerated gradient
PDE: gradient descent PDEs and the corresponding accelerated gra-
dient PDEs generally follow different paths. Further, accelerated PDEs
lead to discretization schemes with less restrictive CFL conditions cor-
responding to larger discrete steps than gradient descent PDEs, leading
to faster convergence in the convex case. Note in the case of strictly
convex problems B = C

refers to the physical interpretation of acceleration as the sec-
ond time derivative of the evolving entity. In typical gradient
descent, the gradient defines the velocity of the evolution. In
accelerated descent, the gradient defines the acceleration of
the evolution. Often, the gradient descent PDE for an energy
function E(u) has the form

ut = −∇E(u), (7)

whereas what we are calling an accelerated gradient PDE
generally has the form

utt = −aut − ∇E(u), (8)

where the addition of aut , with damping coefficient a, acts
as a friction term to dissipate kinetic energy. Our secondary
usage of the term acceleration applies to a special class
of variational problems where a less restrictive CFL con-
dition allows coarser time sampling of the discretized PDEs.
Here an improvement in the CFL conditions for these PDEs
is realized numerically by much larger step sizes for both
their explicit and semi-implicit discretizations. Thereby, this
allows another interpretation of the term “acceleration” as a
raw computational speedup, as shown conceptually in Fig. 1.

We note there are also some acceleration-type methods
that have appeared recently in image processing [3,6,14,
19,28], with the exception of [6,19], these methods are not
derived fromavariational framework, and so they lack energy
monotonicity and convergence guarantees. Ratner and Zeevi
[19] do not derive their approach from an action integral
and therefore do not have the connections to Nesterov or
the heavy ball method. They do not address stability or
model analysis and likewise lack the convergence guarantees.
Baravdish, Svensson, Gulliksson and Zhang do, however,

address the fully linear case of the same nonlinear setup,
motivated from the heavy ball method, but restricted to the
Lp norm of gradient as a regularizer, focusing on mainly
p = 1 (total variation) experiments. They prove the exis-
tence/uniqueness of weak solutions for a regularized version
of the damped nonlinear wave equation and prove the expo-
nential convergence rate from [8]. They, however, limit their
analysis to a single discretization scheme, the Stormer–Verlet
method, which is different from ours. Furthermore, they do
not derive their approach from an action integral and thus
lack connections to Nesterov. Our paper extends the analy-
sis to multiple discretization schemes and multiple fidelities
and gives a more thorough discussion of the stability (CFL)
conditions for the PDEs. We also extend the connection of
Nesterov acceleration to semi-implicit Euler.

Acceleration has also been applied to composite func-
tionals, which have a strongly convex smooth term and a
non-smooth convex term [7,10]. These methods are based
on accelerating the forward/backward splitting algorithms
for such composite functionals and use a regularization on
the TV seminorm. We show in this paper that PDE accelera-
tion can be applied directly to the non-smooth unregularized
TV seminorm, due to a nonlinear stability condition we dis-
cuss in Sect. 4.5.

1.1 Contributions

The contributions of this paper are:

1) We extend the class of accelerated PDEs formulated in
[23,24,30,31] to the setting of generic functions overRn ,
building on the variational insights pioneered by [29].
The method applies to solving general problems in the
calculus of variations. In similar spirit to (4) and (6), the
descent equations in PDE acceleration correspond to a
continuous second-order flow in time which, for a broad
class of regularized inversion problems to be addressed
in Sect. 4, take on the specific form of damped non-
linear wave equations rather than the reaction–diffusion
equations that arise as their traditional gradient descent
counterparts. Accelerated PDEs can be solved numeri-
cally with simple explicit Euler or semi-implicit Euler
schemes which we develop in Sect. 3.

2) We realize an improvement in the CFL condition from
Δt ∼ Δx2 for diffusion equations (or standard gradi-
ent descent), to Δt ∼ Δx for wave equations. We also
refer to this improved stability condition as acceleration
since the maximum stable time step that the PDEs can
take has increased.3 In fact, we will show early on in
Sect. 3 that the improvements in the CFL condition for

3 Acceleration can also be used in the sense that in Nesterov accelera-
tion the gradient is forward looking and computed ahead of the current
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explicit numerical accelerated PDE schemes (compared
with their gradient descent counterparts) are a completely
general property of accelerated PDEs which applies even
when the wave equation structure does not arise.

3) We apply the new numerical discretizations to a class of
inversion problems: denoising, deblurring, and inpaint-
ing with various regularizers and show robust perfor-
mance and improvements over existing methods.

In a companion paper [8], we study the PDE acceleration
method rigorously and prove a convergence rate, perform a
complexity analysis, and show how to optimally select the
parameters, including the damping coefficient (these results
are summarized in Sect. 2). That paper, however, does not
analyze CFL conditions or stability, is more focused on con-
vergence rate analysis, and addresses applications tominimal
surface obstacle problems and improvements to a primal–
dual method.

1.2 Paper Outline

This manuscript is organized as follows: In Sect. 2, we
summarize the work of a companion paper [8], in which
we rigorously study the PDE acceleration method, prove a
convergence rate, perform a complexity analysis, and show
how to optimally select the tuning parameters including the
damping coefficient. In Sect. 3, we develop the explicit and
semi-implicit Euler schemes and derive the improved CFL
conditions for several explicit and semi-implicit numeri-
cal accelerated PDE schemes. In Sect. 4, we extend the
derived numerical schemes: first-order accelerated, second-
order accelerated, and semi-implicit scheme to two separate
inversion problems for both Beltrami and TV regulariza-
tion. In Sect. 5, we apply the method to quadratic, Beltrami,
and total variation regularized problems in image processing
including denoising, deblurring, and inpainting, obtaining
results that are comparable to state-of-the-art methods, such
as the split Bregman approach, and ADMM, and superior to
primal–dual methods.

2 PDE Acceleration

We now present our PDE acceleration framework, which is
based on the seminal work of [23,24,29–31] with suitable
modifications to image processing problems. We consider
the calculus of variation problem

min
u

E[u] :=
∫

Ω

Φ(x,∇u) + Ψ (x, u) dx .

state [16]. The semi-implicit case which is an extension from the ODE
framework of Nesterov uses a similar look ahead for its update scheme.

The Euler–Lagrange equation satisfied by minimizers is

∇E[u] := Ψz(x, u) − div(∇Φ(x,∇u)) = 0, (9)

where Φ = Φ(x, p), ∇Φ = ∇pΦ, and Ψ = Ψ (x, z). We
note that the gradient ∇E[u] satisfies
d

dε

∣∣∣
ε=0

E[u + εv] =
∫

Ω

∇E[u] v dx (10)

for all v smooth with compact support and is often called the
L2-gradient due to the presence of the L2 inner product on
the right-hand side.

We define the action integral

J [u] =
∫ t1

t0
k(t)

(
1

2

∫
Ω

ρu2t dx − b(t)E[u]
)

dt, (11)

where k(t) and b(t) are time-dependent weights, ρ = ρ(x)
represents a mass density, and u = u(x, t). Notice the action
integral is the weighted difference between kinetic energy
1
2

∫
ρu2t dx and potential energy E[u]. The PDE accelerated

descent equations are defined to be the equations of motion
in the Lagrangian sense corresponding to the action J . To
compute the equations of motion, we take a variation on J
to obtain

0 = d

dε

∣∣∣
ε=0

J [u + εv]

=
∫ t1

t0

∫
Ω

k(t)ρutvt − k(t)b(t)∇E[u] v dx,

for smooth vwith compact support inΩ×(t0, t1). Integrating
by parts in t , we have

0 =
∫ t1

t0

∫
Ω

[
− ∂

∂t
(k(t)ρut ) − k(t)b(t)∇E[u]

]
v dx .

Thus, the PDE accelerated descent equations are

∂

∂t
(k(t)ρut ) = −k(t)b(t)∇E[u].

It is more convenient to define a(t) = k′(t)/k(t) and rewrite
the descent equations as

utt + a(t)ut = −b(t)ρ(x)−1∇E[u]. (12)

For image processing problems, there is typically no
Dirichlet boundary condition, so the natural variational
boundary condition ∇pΦ(x,∇u) · n = 0 is imposed on the
boundary ∂Ω , where n is the outward normal. Often this
reduces to the Neumann condition ∂u

∂n = 0.
In a companion paper [8], we study PDE acceleration

descent Eq. (12) rigorously. In particular, we prove energy
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monotonicity and a linear convergence rate. We summarize
the results in Lemma 1 and Theorem 1.

Lemma 1 (Energy monotonicity [8]) Assume a(t), b(t) ≥
0 and let u satisfy (12). Suppose either u(x, t) = g(x) or
∇Φ(x,∇u) · n = 0 on ∂Ω . Then

d

dt
(K [u] + b(t)E[u]) = −2a(t)K [u] + b′(t)E[u], (13)

where K [u] = 1
2

∫
Ω

ρu2t dx. In particular, total energy is
always decreasing provided b′(t) ≤ 0 and E[u] ≥ 0.

Theorem 1 (Convergence rate [8]) Let u satisfy (12) and let
u∗ be a solution of∇E[u∗] = 0 inΩ . AssumeΦ is uniformly
convex in∇u,Ψ is convex, andΨzz is bounded above, u = u∗
on ∂Ω , a(t) = a > 0 is constant, and b(t) ≡ 1 and ρ ≡ 1.
Then there exists C, β > 0 such that

‖u − u∗‖2H1(Ω)
≤ C exp (−βt) . (14)

We mention that the same convergence rate (14) holds for
gradient descent

ut = −∇E[u]

under the same conditions on E . The difference is that gradi-
ent descent is a diffusion equation, which requires a time
step of Δt ∼ Δx2 for stability, while PDE acceleration
(12) is a wave equation which allows much larger time steps
Δt ∼ Δx . Thus, the acceleration is realized as a relaxation
in the CFL condition.

While Theorem 1 provides a convergence rate, it does not
give advice on how to select the damping coefficient a > 0.
It was shown in [8] how to optimally select the damping
coefficient in the linear setting, and we find this choice is
useful for nonlinear problems as well. For convenience, we
recall the results from [8], which apply to the linear PDE
acceleration equation

utt + aut + Lu + λu = f in Ω × (0,∞), (15)

where L is a linear second-order elliptic operator. A Fourier
analysis [8] leads to the optimal choice

a = 2
√

λ1 + λ, (16)

where λ1 is the first Dirichlet eigenvalue of L (or for the
Neumann problem, the first eigenvalue corresponding to a
nontrivial eigenfunction), and the optimal convergence rate

|u(x, t) − u∗(x)| ≤ C exp (−at) . (17)

Notice that if L is degenerate elliptic, so λ1 = 0, which
roughly corresponds to a non-strongly convex optimization

problem, the method still converges when λ > 0, that is, the
presence of a fidelity term in the image processing problem
enables, and accelerates, convergence. This suggests why the
algorithm is successful even for TV restoration, which is not
strongly convex but has a fidelity.

3 Numerical Schemes for Accelerated PDEs

We now describe various time discretization strategies for
the generic accelerated PDE

utt + aut = −∇E[u, ux , uxx , . . .], (18)

alongside related discretizations of the generic gradient
descent PDE

ut = −∇E[u, ux , uxx , . . .] (19)

for comparison. Note (18) represents the unit density (ρ = 1)
and unit energy scaled (b = 1) case of (12). A key advan-
tage of accelerated PDE schemes for regularized inversion
problems, which we explore subsequently in Sect. 4, is that
in typical cases where the gradient descent PDE (19) takes
the form of a linear or nonlinear reaction-diffusion equation,
the matching accelerated PDE (18) takes the form of a linear
or nonlinear wave equation, whose explicit time discretiza-
tion permits a much larger stable time step than the explicit
discretization of (19). Therefore, due to their simplicity of
implementation, as well as their immediately parallelizable
structure, we will restrict our discussion to explicit update
schemes and to the semi-implicit Euler scheme whose two-
part update consists of partial updates which are both explicit
in nature.

3.1 Explicit Forward Euler for Gradient Descent PDEs

We start by considering the explicit forward Euler discretiza-
tion of the continuous gradient descent PDE (19). Using a
forward difference in time to approximate the time derivative
on the left-hand side, we obtain

u(x, t + Δt) − u(x, t)

Δt
= −∇E .

This leads to the following simple discrete iteration

Δun(x) = −Δt ∇En

un+1(x) = un(x) + Δun(x) (20)

where un(x)
.= u(x, nΔt) denotes the current iterate,Δun

.=
u(x, nΔt + Δt) − u(x, nΔt) the increment to be applied,
un+1(x)

.= u (x, (n + 1)Δt) the new iterate, and ∇En(x)
.=
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∇E(x, nΔt) the discrete approximation of the gradient com-
puted at step n.

In most cases, stability considerations require an upper
bound on the time step Δt (the CFL condition) dependent
upon the discretization of∇En [26]. Often this upper bound
for stable time steps is computed using Von Neumann anal-
ysis by linearizing ∇En in (20) and taking a discrete Fourier
transform (DFT) on both sides of the homogeneous part to
obtain

Un+1(ω) −Un(ω) = −Δt
[
z(ω)Un(ω)

]
.

Such a structure often arises when ∇En is computed explic-
itly using only the values of un . In such cases, its linearization
will consist of a combination of un values whose DFT can
be written in the form z(ω)Un(ω) whereUn(ω) denotes the
DFT of un . We will refer to z(ω) as the gradient amplifier,4

which is defined as

gradient amplifier z(ω)
.= DFT (Ln)

DFT (un)
, (21)

where Ln is the linearized homogeneous part of ∇En . This
leads to the following update

Un+1(ω) = (1 − Δt z(ω))︸ ︷︷ ︸
ξ(ω)

Un(ω),

which will be stable as long as the overall update amplifica-
tion factor ξ(ω) does not have complex amplitude exceeding
unity for any frequency ω. This condition can be expressed
as

ξ(ω)ξ∗(ω) = (1 − Δt z(ω))
(
1 − Δt z∗(ω)

) ≤ 1,

which leads to the time step restriction

Δt ≤ z(ω) + z∗(ω)

z(ω)z∗(ω)
= 1

z(ω)
+ 1

z∗(ω)
= 2�

(
1

z(ω)

)
.

For elliptic operators, which are common in regularized opti-
mization in image processing, the gradient amplifier is real
and nonnegative: z(ω) ≥ 0. In such cases, the stability con-
straint takes the form of the following CFL condition

Δt ≤ 2

zmax
(22)

where zmax
.= maxω z(ω).

4 A discrete version ofwhat is often called the symbol of the underlying
linear differential operator that is being approximated.

3.2 Fully Explicit Schemes for Accelerated PDEs

We now turn our attention to the explicit discretizations of
the accelerated PDE (18). We will consider both first- and
second-order approximations of the time derivatives and will
exploit the following lemma in the Von Neumann stability
analysis for each of these choices.

Root Amplitude Lemma Given a quadratic equation Aξ2 +
Bξ +C = 0 with real coefficients (A 
= 0), its roots will sat-
isfy |ξ | ≤ 1 if and only if |B|

|A| − 1 ≤ C
A ≤ 1 (or equivalently

A > C and A + C > |B| for positive A).

Proof We first prove the result in the special case that
A = 1 and B ≥ 0, in which case the roots are
ξ = − B

2 ± 1
2

√
B2 − 4C and claim that |ξ | ≤ 1 if

and only if

B − 1 ≤ C ≤ 1.

If the roots are imaginary, then both have complex
amplitude |ξ |2 = C > 0whichmakes the right hypoth-
esis both necessary and sufficient. The left hypothesis
automatically follows since C > B2

4 ≥ B − 1 (the
first part for the roots to be imaginary and the sec-
ond part equivalent to (B − 2)2 ≥ 0). In the case of
real roots, we want the larger magnitude root to satisfy
|ξ | = B

2 + 1
2

√
B2 − 4C ≤ 1,which can be expressed as√

B2 − 4C ≤ 2 − B. This immediately yields B ≤ 2
as a necessary condition to keep the right side posi-
tive. Under this condition, we can square both sides
and simplify to obtain the left hypothesis as necessary
and sufficient. The right hypothesis automatically fol-
lows since C < B2

4 < 1 (the first part for the roots
to be real and the second part based on our condition).
Combining the hypotheses yields B − 1 ≤ 1 which
satisfies the necessary condition, thus completing the
special case proof. The general case follows since the
roots of Aξ2 + Bξ + C have the same magnitude as
the roots of ξ2 + |B|

|A|ξ + C
A . ��

3.2.1 Second Order in Time Scheme

Using central difference approximations for both timederiva-
tives gives a second-order discretization in time

u(x, t + Δt) − 2u(x, t) + u(x, t − Δt)

Δt2

+ a
u(x, t + Δt) − u(x, t − Δt)

2Δt
= −∇E(x, t),
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which leads to the update

un+1(x) = 2un − (1 − aΔt
2

)
un−1 − Δt2∇En

1 + aΔt
2

. (23)

Applying the DFT to the linearized homogeneous part of the
update scheme (23) yields

Un+1(ω) =
(
2 − Δt2 z(ω)

)
Un − (1 − aΔt

2

)
Un−1

1 + aΔt
2

where z(ω) denotes the gradient amplifier (21). If we substi-
tuteUn±m = ξ±mUn , where ξ(ω) denotes the overall update
amplification factor, then we obtain the quadratic equation

(
1 + aΔt

2

)
︸ ︷︷ ︸

A

ξ2 +
(
Δt2 z(ω) − 2

)
︸ ︷︷ ︸

B

ξ +
(
1 − aΔt

2

)
︸ ︷︷ ︸

C

= 0.

In the case of real z(ω), we may exploit the Root Ampli-
tude Lemma to check the stability condition |ξ(ω)| ≤ 1. The
first condition A ≥ C of the lemma (for positive A) is sat-
isfied since 1 + aΔt

2 ≥ 1 − aΔt
2 for all positive a and Δt ,

and so we use the second condition A + C ≥ |B| to obtain
the stability condition 2 ≥ ∣∣2 − Δt2z(ω)

∣∣, which may be
rewritten as 0 ≤ Δt2z(ω) ≤ 4. In the case where z(ω) ≥ 0,
we automatically satisfy the left-hand inequality for all ω,
leaving us with

Δt ≤ 2√
zmax

. (24)

3.2.2 First Order in Time Schemes

Continuing to use a central difference for the second deriva-
tive but only a one sided difference (forward or backward) for
the first derivative in time yields two alternative first-order
time schemes.

Forward Difference Using forward differences in time
yields the scheme

u(x, t + Δt) − 2u(x, t) + u(x, t − Δt)

Δt2

+ a
u(x, t + Δt) − u(x, t)

Δt
= −∇E(x, t),

which leads to the update formula

un+1(x) = (2 + aΔt) un − un−1 − Δt2∇En

1 + aΔt
. (25)

Von Neumann analysis applied to the linearized homoge-
neous part of (23) yields the quadratic equation

(1 + aΔt)︸ ︷︷ ︸
A

ξ2 +
(
Δt2 z(ω) − 2 − aΔt

)
︸ ︷︷ ︸

B

ξ + 1︸︷︷︸
C

= 0

for the update amplification factor ξ = ξ(ω). Since 1 +
aΔt > 1 for all positive a and Δt , the first condition
A ≥ C of the root amplitude lemma (for positive A) is
always satisfied. We may therefore restrict out attention to
the second condition A + C ≥ |B|, assuming real z(ω),
to determine whether |ξ(ω)| ≤ 1. This gives the condition
(1+aΔt)+1 ≥ ∣∣Δt2z(ω) − (2 + aΔt)

∣∣which is equivalent
to 0 ≤ Δt2z(ω) ≤ 2(2 + aΔt). In the case where z(ω) ≥ 0,
we automatically satisfy the left-hand inequality for all ω,
which leaves us with z(ω)Δt2 − 2aΔt − 4 ≤ 0. Plugging
in the extreme case zmax and restricting Δt to lie below the
positive root in order to keep the quadratic expression on the
left negative yield

Δt ≤
√

4

zmax
+
(

a

zmax

)2

+ a

zmax
. (26)

Notice that the CFL condition (24) for the second-order (cen-
tral difference) scheme is sufficient but not necessary. If,
however, we wish to obtain a condition independent of the
damping a, then minimizing the upper bound with respect
to a (by plugging in a = 0) recovers this prior second-order
CFL condition.

Backward Difference Using backward differences in time
yields

u(x, t + Δt) − 2u(x, t) + u(x, t − Δt)

Δt2

+ a
u(x, t) − u(x, t − Δt)

Δt
= −∇E(x, t),

which has the corresponding update

un+1(x) = (2 − aΔt) un − (1 − aΔt) un−1

− Δt2∇En .
(27)

Similar analysis yields the quadratic equation

ξ2(ω) −
(
2 − aΔt − Δt2z(ω)

)
ξ(ω) + (1 − aΔt) = 0

for the amplification factor ξ(ω). The first condition A ≥ C
of the lemma (for positive A) is always satisfied (1 ≥ 1 −
aΔt) for all positive values ofa andΔt . The second condition
A + C ≥ |B|, assuming real z(ω) ≥ 0, of the lemma, can
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be expressed as Δt2z(ω) + 2aΔt − 4 ≤ 0. Plugging in the
extreme case zmax and restrictingΔt to lie below the positive
root in order to keep the quadratic expression on the left
negative give the following CFL condition

Δt ≤
√

4

zmax
+
(

a

zmax

)2

− a

zmax
. (28)

Notice that the CFL condition (24) for the central difference
scheme is necessary (easily seen by applying the triangle
inequality) but no longer sufficient as in the forward differ-
ence case. Furthermore, the constraint becomes increasingly
restrictive as the damping coefficient a increases, making
it impossible to formulate a sufficient damping-independent
stability constraint. We will therefore give no further consid-
eration to this scheme.

3.3 Recursive Increments and Properties of Explicit
Schemes

For greater convenience in implementation, especially when
upgrading existinggradient descent routines structured accord-
ing to (20) with one array to store the evolving iterate un

and another for its increment Δun , the explicit accelerated
PDE discretizations can be expressed in terms of recur-
sively defined increments. We give the explicit formulas in
Eqs. (29)–(31), where Δun−1 denotes the previously incre-
ment (kept in just one more added array).5

47mm Summary of explicit schemes

gradient descent: Δun = −Δt ∇En, Δt ≤ 2

zmax
(29)

1-order accelerated: Δun = 1

1 + aΔt
Δun−1 − Δt2

1 + aΔt
∇En, Δt ≤

√
4

zmax
+
(

a

zmax

)2

+ a

zmax
(30)

2-order accelerated: Δun = 2 − aΔt

2 + aΔt
Δun−1 − 2Δt2

2 + aΔt
∇En, Δt ≤ 2√

zmax
(31)

Here we see more directly the traditional momentum style
structure (i.e., heavy ball) in that the next increment Δun is
expressed as a weighted combination of the gradient ∇En

and the previous increment Δun−1. Recursion (30) is equiv-
alent to the first order in time, explicit update (25) using
forward differences while the recursion (31) is equivalent to
the second order in time, explicit update (23) using central
differences, and as such they must adhere to the same CFL
conditions (26) and (24) derived earlier for these correspond-
ing schemes.

5 For completeness, thefirst-order backwarddifference schemecan also
bewritten recursively in the formΔun = (1 − aΔt) Δun−1−Δt2∇En .

3.3.1 The First-Order Scheme as a Sub-Case of the
Second-Order Scheme

For any choice of damping α1 and time step Δt1 parameters
used in the first-order scheme (denoted by subscript 1), we
may obtain equivalent update iterations by substituting the
following changeof parameters into the second-order scheme
(denoted by subscript 2)

Δt2 = Δt1√
1 + a1Δt1

2

and a2 = a1√
1 + a1Δt1

2

. (32)

This is easily shown by algebraic simplification of the
second-order update (and stability condition) after applying
the change of parameters. The simplified result will yield the
first-order scheme (and stability condition) in the original
damping and time step parameters. In short, the first-order
scheme is always equivalent to the second-order schemewith
a reduced time step and damping via the contraction factor

1√
1+ a1Δt1

2

< 1.

A particular special case of this equivalency arises in con-
sidering the maximal stable time step for both schemes. For
a fixed choice of damping a, the first-order scheme appears
to allow a more generous upper bound than the second-
order scheme. However, there is no effective difference when
substituting (32) into the second-order scheme.Although the

upper bound on the time step is smaller, the contracted time
step is also smaller, such that the maximum stable time step
in the first-order scheme rescales exactly to the maximum
stable time step in the second-order scheme. Thus, so long
as the damping is also contracted according to (32), the first-
order scheme implemented with its maximum stable time
step is equivalent to the second-order scheme implemented
with its maximum stable time step.

We may also consider the backward version of the change
of parameters (32) in order to map the second- order scheme
into the first-order scheme. In this case, using parameters α2

andΔt2 in the second-order scheme is equivalent to applying
the following change of parameters to the first-order scheme
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Δt1 = Δt2√
1 − a2Δt2

2

and a1 = a2√
1 − a2Δt2

2

. (33)

However, this backward mapping only applies when the
second-order parameters satisfy a2Δt2 < 2. When this con-
dition is satisfied, we can show by direct substitution and
algebraic simplification that the second-order scheme (and
stability condition) is equivalent to the first-order scheme
(and stability condition) with an amplified time step and
damping coefficient via the amplification factor

1√
1 − a2Δt2

2

> 1.

Assuming the same condition is satisfied, the second-order
scheme implemented with its maximum stable time step is
equivalent to the first-order scheme implemented with its
maximum stable time step after boosting the damping param-
eter according to (33).

3.3.2 Critical Damping in the Second-Order Scheme
(Gradient Descent)

Unlike the forwardmapping of the first order into the second-
order discrete scheme, which is always possible for any
choice of first- order discrete parameters a1 and Δt1, the
backward mapping is not possible for certain choices of the
second-order discrete parameters, namely for a2Δt2 ≥ 2,
where the backward amplification factor 1√

1− a2Δt2
2

is unde-

fined. While Δt2 is upper bounded by the second-order
scheme’s stability constraint, there is no such upper bound
imposed on α2 since the stability constraint is independent
of α2. As such for any stable, nonzero, second-order dis-
crete time step Δt2, we may always choose the second-order
discrete damping coefficient a2 high enough to enter into
this parameter regime where a2Δt2 ≥ 2. In this case the
second-order scheme will exhibit behavior that is no longer
reproducible by the first-order scheme.

It is interesting to consider what happens at the transition
point when a2Δt2 = 2. It is immediately seen, by plug-
ging this into (31), that the second-order scheme becomes
identical to the discrete gradient descent scheme (29) with
an effective gradient descent time step of Δt = 1

2Δt22 at
this transition point (and if the second-order accelerated time
step Δt2 was chosen to be the maximum stable step size of
2/

√
zmax, the effective gradient descent time stepΔt will also

be the maximum stable gradient descent step size of 2/zmax).
If we fix the second-order step size Δt2 and approach the
transition point a2 = 2/Δt2 from below, where an equiv-
alent first-order damping coefficient a1 can be obtained via
(33), then we see that the damping in the matching first-order
scheme becomes infinite as the damping in the second-order

scheme approaches this critical value. This constitutes a dis-
crete analog of the continuum property that the continuous
gradient descent PDE (19) arises as the infinite frictional limit
of the continuous accelerated descent PDE (18).

If wewant a damping valueα2 in the second-order scheme
that will always keep us below this transition point for all
choices of stable time step, thenwemust satisfy the inequality
a2Δt2 < 2 for the maximum stable step size of 2/

√
zmax.

This leads to the following upper bound for the second-order
damping coefficient.

a2 <
√
zmax.

Namely, the square of damping factor should be strictly less
than the gradient amplifier.

3.3.3 Over-Damping in the Second-Order Scheme (Gradient
Descent with Resistance)

Noting that gradient descent arises in both schemes (although
only in the limiting sense for the first-order scheme) at the
transition point when a2Δt2 = 2 and that both schemes offer
equivalent discretizations of accelerated descent according
to the rescalings (32) and (33) below this transition point,
it is now interesting to consider what happens above this
transition point in the second-order scheme. If we choose
a2 >

√
zmax, then there will be stable time step choices for

Δt2 that will bring us beyond this transition.
In the casea2Δt2 > 2, the second-order update in its recur-

sive form (31) becomes a weighted combination of a step in
the negative gradient direction as well as a backward step in
the previous update direction.As such, the combined step can
be interpreted as partially undoing the previous step, thereby
slowing down the descent process. If we take the limiting
case as the second-order damping coefficient a2 becomes
infinite (keeping the same fixed time step Δt2), the stability
of the scheme will not be affected, but the new update will
fully subtract the previous update, thereby returning to the
previous state before applying the new gradient step. Fur-
thermore, after subtracting the previous update the amount
of movement along the new gradient step will be zero for
infinite a2. This can be seen by noting that the weight on
the previous update in (31) approaches −1 from above and
that the weight on the gradient approaches 0 from below as
a2 → ∞. Therefore, in the limit, even if we initialize the
recursion (31) with a nonzero starting update Δu0 (the dis-
crete analog of an initial velocity), the effect will still be to
remain motionless at the initial condition u0.

This leads to the interpretation of the over-damped case
as a resisted version of gradient descent for any finite α2 >

2/Δt2, since we start with a gradient step in the first update,
then partially undo it before taking a new gradient step in the
second update, which is then partially undone before taking
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a new gradient step in the third update, and so on. Since the
fraction of each gradient step which gets subtracted in the
subsequent step remains fixed, rather than accumulating, we
do not refer to this as deceleration but rather as resistance,
which impedes the normal progress of gradient descent by a
constant factor. As a2 increases, resistance increases, further
slowing the progress of gradient descent, while completely
halting it in the limit as a2 → ∞.

3.4 Semi-Implicit Schemes

We may use semi-implicit Euler style discretizations of (18)
to obtain systems which more closely resemble the clas-
sic two-part Nesterov recursion. We may do this with any
of the fully explicit schemes (23), (25), or (27) by replac-
ing the explicit discretization ∇En of the gradient with
a “predicted estimate” ∇̂E

n+1
of its implicit discretization

∇En+1. This estimate is obtained by applying the same dis-
cretization of ∇E used in approximating ∇En ≈ ∇E(un)
to a partial update vn for the “look ahead” approximation
∇̂E

n+1 ≈ ∇E(vn). The partial update vn is obtained before-
hand via the fully explicit update without the gradient term
(i.e., by treating ∇En as if it were zero). Using this strategy
with the second order in time scheme (23) yields the two-step
update

vn = un + 2 − aΔt

2 + aΔt
Δun−1

un+1 = vn − 2Δt2

2 + aΔt
∇E

(
vn
)

︸ ︷︷ ︸
≈∇̂E

n+1

.
(34)

Notice thefirst and second steps, in isolation, both have a fully
explicit structure. Von Neumann analysis can be employed
to analyze the stability of this scheme according to the fol-
lowing update relationships between the DFT sequencesUn ,
V n , andUn+1 (transforms of un , vn , and un+1, respectively)
where z(w) represents the gradient amplifier (21) associated
with the linearization of ∇En (and therefore also with the
linearization of ∇̂E

n+1
). We obtain

V n = 4

2 + aΔt
Un − 2 − aΔt

2 + aΔt
Un−1

Un+1 =
(
1 − 2Δt2

2 + aΔt
z(ω)

)
V n .

If we substitute the first expression into the second, fol-
lowed by substitutions Un±m = ξ±mUn , then we obtain
the quadratic equation

(2 + aΔt)2︸ ︷︷ ︸
A

ξ2 − 4
(
2 + aΔt − 2Δt2z(ω)

)
︸ ︷︷ ︸

−B

ξ

+ (2 − aΔt)
(
2 + aΔt − 2Δt2z(ω)

)
︸ ︷︷ ︸

C

= 0,

for the overall combined update amplification factor ξ(ω).
We may use the root amplitude lemma to check the stability
criterion |ξ(ω)| ≤ 1.

First Stability Condition: A ≥ C
The first condition from the lemma (for positive A) can be

expressed in quadratic form as azΔt2−(a2 + 2z
)
Δt−2a ≤

0 which will be satisfied between its positive and negative
roots. Restricting our interest to only positive values of Δt
therefore yields the constraint

Δt ≤ a2 + 2z +
√(

a2 + 2z
)2 + 8a2z

2az︸ ︷︷ ︸
g(a,z)>0

where

∂g

∂a
=
(
a2 − 2z

)
︸ ︷︷ ︸
toggles

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a2 + 2z +
√(

a2 + 2z
)2 + 8a2z

2a2z
√(

a2 + 2z
)2 + 8a2z︸ ︷︷ ︸

always positive

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

To satisfy this independently of a, we examine the partial
derivative of the upper bound g(a, z) with respect to a see
that it starts out negative for a2 < 2z and then turns positive
for a2 > 2z. The minimum upper bound is therefore attained
when z(ω) = zmax and a2 = 2zmax yielding

Δt ≤ 2 + √
2√

zmax
.

While this upper bound is more generous than (24) for the
fully explicit scheme, it only satisfies the first of the two sta-
bility conditions in the bounded root lemma.Wenowproceed
to the second condition which will be more restrictive.

Second Stability Condition: A + C ≥ |B|
The second condition from the lemma (for positive A) can

be expressed as

2 + aΔt − Δt2z(ω) + 1

2
aΔt3z(ω)

≥
∣∣∣2 + aΔt − 2Δt2z(ω)

∣∣∣ .
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For small enough time steps, 2 + aΔt − 2Δt2z is positive,
the absolute value signs can be removed, and the inequality
holds. For larger time steps, 2+aΔt−2Δt2z becomes and the
inequality can be rearranged into the following cubic form

az(ω)Δt3 − 6z(ω)Δt2 + 4aΔt + 8 ≥ 0.

Minimizing on the left with the case a = 0 and z(ω) = zmax

yields a stricter and therefore sufficient, stand-alone stability
condition

Δt ≤ 2√
3zmax

. (35)

Note that this upper bound is smaller, by a factor of
√
3, than

the maximum stable time step (24) for the corresponding
fully explicit scheme (23) or for its recursive equivalent (31).

4 Regularized Inversion via Accelerated
PDEs

Here we consider a very general class of variational regular-
ized inversion problems in the accelerated PDE framework.
In particular, we assume energy functions with the form

E(u) =
∫

Ω

f (|Ku − g|)︸ ︷︷ ︸
fidelity

+ r(‖∇u‖)︸ ︷︷ ︸
regularity

dx

with ḟ , ṙ , r̈ > 0. The function f is a monotonically increas-
ing penalty on the residual error between data measurements
g and a forward in the form of linear operatorK applied to the
reconstructed signal u, while r is a monotonically increasing
penalty on the gradient of the reconstruction.

4.1 General Case (NonlinearWave Equation)

The continuum gradient of E has the form

∇E(u) = ḟ (|Ku − g|)
|Ku − g|︸ ︷︷ ︸
λ(u,x)>0

K∗ (Ku − g)

− ṙ(‖∇u‖)
‖∇u‖︸ ︷︷ ︸
c(∇u)>0

(∇ · ∇u − uηη

)

− r̈(‖∇u‖)︸ ︷︷ ︸
d(∇u)>0

uηη,

where K∗ denotes the adjoint of the forward operator K and
where η

.= ∇u
‖∇u‖ denotes the unit vector along the gradi-

ent direction of u. This gives rise to the following class of
accelerated flows which take the form of a nonlinear wave
equation

utt − c(∇u)
(∇ · ∇u − uηη

) − d(∇u) uηη + aut

= λ(u, x) K∗ (g − Ku) .

If, purely for the sake of understanding stability, wemodel
the short time behavior of any of the presented discrete update
schemes in the neighborhood of a particular spatial point x ,
by treating λ, c, and d as locally constant and by representing
the forward model linear operator K as a real convolution
kernel K with adjoint KT , then ∇E can be approximated
near x by the following linear expression

∇E ≈ λ[x] KT[x] ∗ K[x] ∗ (un − g)

− c[x]
(∇ · ∇un − uηη

)+ d[x] uηη

(36)

where the subscript [x] denotes the local point of spatially
constant approximation (rather than a function argument).
Assuming a uniform Cartesian grid oriented such that its
first basis vector e1 = (1, 0, 0, . . .) aligns with ∇u at our
local point x and that our spatial derivative discretizations
become equivalent to central difference (second derivative)
approximations with space step Δx in each direction, then
we obtain the following local approximation of the gradient
amplifier of (36)
z(x, ω1,ω2, . . . , ωN )

≈ λ[x] DFT(KT[x])DFT(K[x])

+ 2

Δx2

(
d[x] (1 − cosω1Δx)

+ c[x]
N∑

k=2

(1 − cosωkΔx)
)
.

(37)

Noting that the Fourier transform of the adjoint KT of a
real convolution kernel is always the complex conjugate of
the Fourier transform of the kernel K itself, we see that the
gradient amplifier is real and positive and we can write the
following upper bound as a function frequency ω

max
ω

z ≤ λ[x] max
ω

|DFT(K[x])|2

+ 4
c[x] (N − 1) + d[x]

Δx2

with equality in cases where the complex amplitude of
DFT(K ) is maximal at ω = (π, . . . , π). However, since this
upper bound depends on the local point of approximation
x , we need to maximize over x as well in order to exploit
the CFL formulas presented earlier in terms of zmax. Doing
so yields the following upper bound for the local gradient
amplifier

zmax ≤ Kmaxλmax + 4
(N − 1)cmax + dmax

Δx2
(38)

where λmax
.= maxx λ, cmax

.= maxx c, dmax
.= maxx d, and

Kmax
.= maxx,ω

(|DFT(K )|2).

123



Journal of Mathematical Imaging and Vision

If we now plug (38) into the time step restriction (24) for
the fully explicit second- order accelerated scheme (23), we
obtain the following sufficient condition for stability

Δt ≤ 2Δx√
KmaxλmaxΔx2 + 4(N − 1)cmax + 4dmax

. (39)

The corresponding condition for gradient descent is obtained
by squaring Δx in the numerator and removing the radical
(squaring) the denominator. As such, we note three favor-
able step size trends for PDE acceleration compared to PDE
gradient descent. Most notably, when the regularizing coef-
ficients cmax and dmax dominate, stable time step sizes are
now directly proportional to spatial step sizes rather than
to their squares, making the upper bound linear rather than
quadratic inΔx .We see similar gains as well when the kernel
K exhibits large amplification at one or more frequencies. In
such cases, stable step sizes are inversely proportional to the
maximum kernel amplification rather than to its square.

4.2 Quadratic Regularization (LinearWave Equation)

The easiest special case to considerwould be that of quadratic
fidelity and regularity penalties without any forward model
(more precisely with K as the identity operator)

E(u) =
∫

Ω

λ

2
(u − g)2 + c

2
‖∇u‖2 dx .

In this case, the gradient is linear and the local approximation
(36) becomes exact with λ(x) = λ, c(x) = d(x) = c

∇E = λ(u − g) − c∇ · ∇u.

The accelerated descent PDE therefore takes the form of
a damped inhomogeneous linear wave equation.

utt − c∇ · ∇u + aut = λ(g − u). (40)

In this case, the gradient amplifier z(ω) (21) is easy to
compute. If central differences on a uniform N -dimensional
Cartesian grid with space step Δx in each direction are used
to approximate the spatial derivatives of the Laplacian ∇ ·∇,
then

z(ω) = λ + 2c

Δx2

N∑
k=1

(1 − cosωkΔx),

where ω = (ω1, . . . , ωN ), which makes the local approxi-
mation (37) exact as well. Its upper bound

zmax = λ + 4Nc

Δx2
(41)

is attained at ω = (π, . . . , π), thereby making the general
condition (39) necessary as well as sufficient for stability.
Plugging all this into (29)–(31) yields the following fully
explicit updates (and CFL conditions), with multi-index α ∈
Z
N to indicate each grid location, and where the additive

multi-index

ek = (δ1k, δ2k, . . . , δNk)

is used to denote displacements to adjacent grid neighbors
(δ jk being the standard Kronecker delta).
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Explicit fidelity schemes for quadratic regularization

gradient descent

⎧⎪⎨
⎪⎩

Δunα = −Δt

(
λ(unα − gα) − c

∑N
k=1

unα+ek
−2unα+unα−ek

Δx2

)

Δt≤ 2Δx2

4Nc+λΔx2

(42)

1-order accelerated

⎧⎪⎪⎨
⎪⎪⎩

Δunα = 1
1+aΔt Δun−1

α − Δt2
1+aΔt

(
λ(unα − gα) − c

∑N
k=1

unα+ek
−2unα+unα−ek

Δx2

)

Δt≤Δx

√
4

4Nc+λΔx2
+
(

aΔx
4Nc+λΔx2

)2+ aΔx2

4Nc+λΔx2

(43)

2-order accelerated

⎧⎪⎨
⎪⎩

Δunα = 2−aΔt
2+aΔt Δun−1

α − 2Δt2
2+aΔt

(
λ(unα − gα) − c

∑N
k=1

unα+ek
−2unα+unα−ek

Δx2

)

Δt≤ 2Δx√
4Nc+λΔx2

(44)

semi-implicit

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vnα = unα + 2−aΔt
2+aΔt Δun−1

un+1
α = vnα − 2Δt2

2+aΔt

(
λ(vnα − gα) − c

∑N
k=1

vnα+ek
−2vnα+vnα−ek
Δx2

)

Δt≤ 2Δx√
3(4Nc+λΔx2)

(sufficent but not necessary when a > 0)

(45)

4.3 Implicit Handling of the Fidelity Term

The portion of the continuum gradient which arises from the
fidelity term is λ(u−g), which we have discretized explicitly
in the above schemes asλ(unα−gα). Since this term, unlike the
Laplacian discretization, does not depend upon neighboring

grid locations, we could evaluate it implicitly at the updated
value ofu bypluggingλ(un+1

α −gα) into anyof these schemes
and still rearrange the resulting expressions to obtain explicit
updates for un+1

α . Algebraic manipulation of these resulting
implicitly handled fidelity schemes would yield the follow-
ing equivalent schemes, restructured to reveal their similarity
to the schemes (42)–(45).

Implicit fidelity schemes for quadratic regularization

gradient descent: Δunα = − Δt

1 + λΔt

(
λ(unα − gα) − c

N∑
k=1

unα+ek − 2unα + unα−ek

Δx2

)
(46)

1-order accelerated: Δunα =
Δun−1

α − Δt2
(

λ(unα − gα) − c
∑N

k=1
unα+ek

−2unα+unα−ek
Δx2

)

1 + (a + λΔt)Δt
(47)

2-order accelerated: unα =
(2 − aΔt)Δun−1

α − 2Δt2
(

λ(unα − gα) − c
∑N

k=1
unα+ek

−2unα+unα−ek
Δx2

)

2 + aΔt + 2λΔt2
(48)

semi-implicit:

⎧⎨
⎩

vnα = unα + 2−aΔt
2+aΔt Δun−1

un+1
α = vnα − 2Δt2

2+aΔt+2λΔt2

(
λ(vnα − gα) − c

∑N
k=1

vnα+ek
−2vnα+vnα−ek
Δx2

)
(49)
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Written in this form, it is easy to show by comparison that
these schemes become equivalent to their explicit fidelity
counterparts by a change of time step, damping parame-
ter, or both. In the case of gradient descent, the implicit
fidelity scheme (46) is identical to explicit fidelity scheme
(42) with a smaller time step, using Δt → Δt

1+λΔt . The first-
order implicit fidelity accelerated scheme (47) is equivalent
to its explicit fidelity counterpart (43) with a larger damping
coefficient, using a → a + λΔt . The second-order implicit
fidelity accelerated scheme (48) is equivalent to the explicit
fidelity scheme (44) with both a smaller time step and an
adjusted damping coefficient (may be either larger or smaller
depending on λ), using Δt → Δt√

1+ λ
2Δt2

and a → a+λΔt√
1+ λ

2Δt2
.

Finally, the implicit fidelity adaptation (49) of the semi-
implicit scheme (45), obtained by replacing λ(un+1

α −g)with
λ(vnα − g), is equivalent to the original semi-implicit scheme
(45) with both a smaller time step and a larger damping coef-

ficient, using Δt → Δt√
1+ 2λΔt2

2+aΔt

and a → a
√
1 + 2λΔt2

2+aΔt .

The CFL conditions for these implicit fidelity schemes
can therefore be obtained by applying these substitutions
backward to the matching explicit (or semi-implicit) CFL
conditions. While this often yields a larger maximum stable
time step, the apparent gain is deceptive since therewill be no
numerical difference to the corresponding explicit (or semi-
implicit) update with a smaller time step. As such, there is
neither a computational nor a numerical advantage to han-
dling the fidelity term implicitly. While we have illustrated
this here for the special case of quadratic regularization,
the parameter remappings showing equivalency between the
explicit and partially implicit schemes depend only upon the
damping and fidelity parameters. It is easy to see that the
exact same analysis applies even in the nonlinear case of
non-quadratic regularization, making this equivalency (and
therefore the lackof benefit in implicitly handling thefidelity)
more general.

Further generalization of this analysis is also possible in
the accelerated cases for non-quadratic fidelity penalization
as well as for nontrivial forward modelsK. However, in such
cases, equivalency would require substitution of a constant
damping parameter α in the partially implicit scheme with a
spatially varying damping in the equivalent explicit scheme.
For example, in the case of a quadratic fidelity penalty paired
with a convolution kernel K in the first-order accelerated
implicit fidelity scheme (47), a constant damping parameter
a would be have to be replaced by the spatially varying aI+
λΔt K

T
K in order to use the explicit fidelity scheme (43) to

obtain equivalent updates. This would require inversion of
the matrix (1+ aΔt)I + λΔt2K

T
K , as division by a scalar

would no longer occur in the explicit update (43). However,
since this inverse does not depend on u, its inverse could be
computed/approximated just once and then reused in every

update step (in cases where the damping does not change
with time).

4.4 Beltrami Regularization

Another special case to consider is Beltrami regularization.
We’ll consider the case of a quadratic penalty and an attenu-
ating, mean-preserving convolution kernel K

E(u) =
∫

Ω

λ

2
(K ∗ u − g)2 + 1

β

√
1 + ‖β∇u‖2

︸ ︷︷ ︸√
ε2+‖∇u‖2, ε= 1

β

dx . (50)

The gradient ∇E is given by

∇E = λKT ∗ K ∗ (u − g) − ∇ ·
(

β∇u√
1 + ‖β∇u‖2

)

︸ ︷︷ ︸
∇u√

ε2+‖∇u‖2 , ε= 1
β

.

In this case, the nonlinear variational gradient decomposes
as in (36) to the form

∇E = λKT ∗K ∗ (u − g)− β√
1 + ‖β∇u‖2︸ ︷︷ ︸

c

(∇ · ∇u − uηη

)

− β(√
1 + ‖β∇u‖2

)3
︸ ︷︷ ︸

d

uηη

The accelerated PDE (technically an integral partial differ-
ential equation with the convolution) takes the quasilinear
form

utt − ∇ ·
(

β∇u√
1 + ‖β∇u‖2

)
+ aut = λKT ∗ K ∗ (g − u).

(51)

Note that both coefficients c andd are boundedbyβ (an upper
bound which is actually reached in both cases at any point
and time where ∇u(x, t) = 0) and that max |DFT(K )| = 1
by our assumption that K attenuates while preserving the
mean. Plugging this into (38) yields

zmax ≤ λ + 4Nβ

Δx2
(52)

if we assume a consistent discretization of

∇ ·
(

β∇u√
1 + ‖β∇u‖2

)
,
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which converges, as ∇u → 0, to the central differ-
ence approximation of the β-scaled Laplacian β∇ · ∇u ≈
β
∑N

k=1
unα+ek

−2unα+unα−ek
Δx2

with spatial step size Δx in each
direction (see Sect. 4.2 for the multi-index subscript nota-
tion α and ek). If we let D2

β,Δxu
n denote the discretization

of ∇ ·
(

β∇u√
1+‖β∇u‖2

)
, then we obtain the schemes in

Eqs. (53)–(56).

92mm Summary of schemes for Beltrami regularization

gradient descent

⎧⎨
⎩

Δun = −Δt
(
λKT ∗ K ∗ (un − g) − D2

β,Δxu
n
)

Δt≤Δx2
(

2
4Nβ+λΔx2

) (53)

1-order accelerated

⎧⎪⎪⎨
⎪⎪⎩

Δun = 1
1+aΔt Δun−1 − Δt2

1+aΔt

(
λKT ∗ K ∗ (un − g) − D2

β,Δxu
n
)

Δt≤Δx

(√
4

4Nβ+λΔx2
+
(

aΔx
4Nβ+λΔx2

)2+ aΔx
4Nβ+λΔx2

) (54)

2-order accelerated

⎧⎪⎨
⎪⎩

Δun = 2−aΔt
2+aΔt Δun−1 − 2Δt2

2+aΔt

(
λKT ∗ K ∗ (un − g) − D2

β,Δxu
n
)

Δt≤Δx

(
2√

4Nβ+λΔx2

) (55)

semi-implicit

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vn = un + 2−aΔt
2+aΔt Δun−1

un+1 = vn − 2Δt2
2+aΔt

(
λKT ∗ K ∗ (vn − g) − D2

β,Δxv
n
)

Δt≤Δx

(
2√

3(4Nβ+λΔx2)

) (56)

4.5 Total Variation Regularization

If we consider the limit as β → ∞, the Beltrami regulariza-
tion penalty converges to the total variation penalty

E(u) =
∫

Ω

λ

2
(K ∗ u − g)2 + ‖∇u‖ dx (57)

with a nonlinear variational gradient (36) that decomposes
as

∇E = λKT ∗ K ∗ (u − g) − ∇ ·
( ∇u

‖∇u‖
)

= λKT ∗ K ∗ (u − g) − 1

‖∇u‖︸ ︷︷ ︸
c

(∇ · ∇u − uηη

)
.

The accelerated PDE now takes the form of the nonlinear
wave equation

utt − ∇ ·
( ∇u

‖∇u‖
)

+ aut = λKT ∗ K ∗ (g − u). (58)

In this case, the coefficient d vanishes, but the coefficient c no
longer has a finite upper bound. Plugging this into (38) yields
an infinite upper bound for the maximum gradient amplifier
if at any point and time ∇u(x, t) = 0. Otherwise, by our
earlier assumption on K (see Sect. 4.4) we obtain

λ ≤ zmax ≤ λ + 4(N − 1)

Δx2 min ‖∇u‖ . (59)

For the explicit second-order accelerated scheme, this
ensures the sufficient condition Δt ≤ 2√

λ+ 4(N−1)
Δx2 min ‖∇u‖

for a

stable step. If we fix Δt , we may rearrange this inequality to
obtain an equivalent sufficient condition

min ‖∇u‖ ≥ N − 1

Δx2
4Δt2

4 − λΔt2

which takes the form of a lower bound on the spatial gradient.
Here an interesting nonlinear dynamic occurs to keep

the implementation stable by preventing initiated instabil-
ities from growing unbounded. If the spatial gradient falls
below this lower bound and instabilities begins to propagate
at one or more frequencies, they will eventually cause the
spatial gradient to rise above the guaranteed stable lower
bound at which point the instabilities will cease growing.
In the absence of a kernel K , the fastest growing instabil-
ity will occur at the highest digital frequency in each grid
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direction ω = (π, . . . , π) which corresponds to oscillations
between immediately adjacent grid points; this in turn will
most rapidly increase the discrete difference approximations
of ‖∇u‖. In the presence of a strongly smoothing kernel, the
fastest growing instabilitymayoccur at lower digital frequen-
cies, thereby causing a low-grade ringing effect, with several
grid points per period, until the amplitude of the oscillation
is large enough to drive adjacent pixel differences back over
the lower bound for ‖∇u‖.

A similar phenomenon occurs with both the first-order
and semi-implicit schemes (and even with gradient descent),
making all these schemes stable independently of the regular-
izer coefficient c. As such, purely for stability considerations
alone, the necessary step size constraint will be connected to
the lower bound λ of the gradient amplifier zmax rather than
its upper bound in (59). This yields the following necessary
conditions for stability. However, the schemesmay only con-
verge under these constraints in an oscillatory sense with a
fluctuating level of “background noise”whose amplitudewill
depend upon the value of Δt .

gradient descent: Δt ≤ 2

λ
(60)

1-order accelerated: Δt ≤
√
4

λ
+
(a
λ

)2 + a

λ
(61)

2-order accelerated: Δt ≤ 2√
λ

(62)

semi-implicit: Δt ≤ 2√
3λ

(63)

We may exploit the behavior of this nonlinear stabilizing
effect to obtain amore useful time step constraint by plugging
in a minimal acceptable value of ‖∇u‖ for the final recon-
struction into the stability condition for Δt . A natural way
to approach this is by exploiting a quantization interval Q
for the digital representation of u together with the following
discrete approximation bounds for ||∇u‖

min ‖∇u‖ = min
α

√√√√ N∑
k=1

(
uα+ek − uα

Δx

)2

≥
√
N min

α,k

(
uα+ek − uα

Δx

)2

=
√
N

Δx
min
α,k

∣∣uα+ek − uα

∣∣ .

If we now determine that instability-related distortions con-
fined to a single quantization interval Q between neighboring
pixels are acceptable, we substitute

min ‖∇u‖ →
√
N

Δx
Q

into the upper bound for (59) to obtain

zmax ≤ λ + 4(N − 1)

QΔx
√
N

< λ + 4
√
N

QΔx
(64)

within the desired stable regime for ‖∇u‖. This in turn gives
rise to the schemes in Eqs. (65)–(68), where D2

Δxu
n denotes

the discretization of ∇ ·
( ∇u

‖∇u‖
)
.
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Fig. 2 Results of Beltrami
regularization applied to a noisy
baboon image with varying
values of λ and β. The units of λ

are thousands

Table 1 PDE accelerated
Beltrami regularization runtimes
on the 512 × 512 baboon image

λ = 1000 λ = 5000 λ = 7000

Time (s) Iterations Time (s) Iterations Time (s) Iterations

β2 = 1/5 0.55 124 0.27 60 0.23 50

β2 = 1 0.81 183 0.38 85 0.32 71

β2 = 5 1.20 273 0.54 122 0.45 101
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Fig. 3 An example of
inpainting using the PDE
accelerated Beltrami
regularization framework on the
cameraman image

Fig. 4 Deblurring of an image
using the explicit accelerated
PDE scheme compared with the
results of two other
state-of-the-art methods (final
signal-to-noise ratios shown for
each restoration)

Fig. 5 Denoising of a synthetic
image with total variation
restoration with λ = 1000 via b
split Bregman and c PDE
acceleration. In PDE
acceleration, we used
Δt = Δx/2 and a = 2

√
λ
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Fig. 6 Comparison of PDE acceleration, primal–dual, and split Bregman algorithms for denoising a noisy square image. A one-dimensional slice
of the image is displayed at the same computation time for each algorithm

(a) (b)

Fig. 7 Comparison of flows generated by a PDE acceleration and b primal–dual for solving the TV restoration problem on the noisy square image.
Notice the edges are better preserved in PDE acceleration earlier in the flow
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Summary of schemes for Total Variation regularization

gradient descent

⎧⎨
⎩

Δun = −Δt
(
λKT ∗ K ∗ (un − g) − D2

Δxu
n
)

Δt≤QΔx
(

2
4
√
N+λQΔx

) (65)

1-order accelerated

⎧⎪⎨
⎪⎩

Δun = 1
1+aΔt Δun−1 − Δt2

1+aΔt

(
λKT ∗ K ∗ (un − g) − D2

Δxu
n
)

Δt≤√
QΔx

(√
4

4
√
N+λQΔx

+
(

a
√
QΔx

4
√
N+λQΔx

)2+ a
√
QΔx

4
√
N+λQΔx

) (66)

2-order accelerated

⎧⎨
⎩

Δun = 2−aΔt
2+aΔt Δun−1 − 2Δt2

2+aΔt

(
λKT ∗ K ∗ (un − g) − D2

Δxu
n
)

Δt≤√
QΔx

(√
4

4
√
N+λQΔx

) (67)

semi-implicit

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vn = un + 2−aΔt
2+aΔt Δun−1

un+1 = vn − 2Δt2
2+aΔt

(
λKT ∗ K ∗ (vn − g) − D2

Δxv
n
)

Δt≤√
QΔx

(√
4

3(4
√
N+λQΔx)

) (68)

5 Experimental Examples

5.1 Beltrami Denoising

Our first application is to the problem of Beltrami regular-
ization for image denoising and image inpainting [15,21,32],
which corresponds to minimizing (50) in the absence of
a kernel K via the accelerated PDE (51). In this case, g
is the original noisy image, and the minimizer u is the
denoised/inpainted image. For denoising, we typically set
the parameter λ to be a positive constant, and for inpainting
we can set λ = 0 in the region D ⊂ Ω to be inpainted and
set λ to be large or ∞ in Ω \ D. The Beltrami regulariza-
tion term interpolates between the TV norm

∫ |∇u| and the
H1 norm

∫ |∇u|2—near edges where ∇u is large, it behaves
like the TV norm to preserve edges, and where ∇u is small
it behaves like the H1 norm in order to reduce staircasing.
Recently, Zosso and Bustin [32] have proposed an efficient
primal–dual projected gradient method for solving Beltrami
regularized problems.

We use the first-order explicit scheme (54) with forward
differences for ∇u and backward differences for div. We set
the damping coefficient to a = 2

√
βπ2 + λ via the linear

analysis (16) and run the algorithm at its maximum stable
stepΔt (54) until the absolute difference between the current
and previous iterates falls below10−4.Wenote that the image
is normalized so the pixel values fall in the interval [0, 1].

Figure 2 shows the results of applying the PDE acceler-
ated Beltrami regularization to a noisy baboon test image
with varying values of λ and β with single-threaded C++

code on a 3.2-GHz Intel processor running Linux. The cor-
responding runtimes are given in Table 1 and are favorably
competitivewith the runtimes reported in [32], who proposed
a primal–dual projected gradient algorithm for Beltrami reg-
ularization. Notice the algorithm does slow down somewhat
when λ is small and the denoising is heavily regularized,
but the difference is far less pronounced compared to other
explicit methods such as gradient descent.

5.2 Beltrami Inpainting

We also give an example of PDE acceleration for Beltrami
regularized inpainting in Fig. 3. We used β = 1 and a = 5π ,
and the inpainting took 687 iterations (11.48 s) starting from
an initial guess given by nearest neighbor interpolation. This
is a good deal slower than the denoising examples. It is pos-
sible to give a partial explanation for this. Recall that the
optimal damping parameter, and convergence rate, depends
on the size of the first eigenvalue of the linearized opera-
tor on the given domain and the presence of a zeroth-order
term λu. In inpainting, there is no zeroth-order term and the
domain is highly irregular. Further, the inpainting domain is
typically disconnected, so the eigenvalues on each connected
component would be required, and this would lead to differ-
ent choices of damping coefficient in each region. We plan
to investigate this issue, and others, in future work.
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Fig. 8 Comparison of steady-state solutions for denoising the 2D noisy square for different time steps in PDE acceleration. The scheme is stable
in L∞ for a variety of time steps though we observe Δt ≤ Δx is required to ensure the solution is a reasonable denoising

5.3 Beltrami Deblurring

Finally, we give an example of PDE acceleration for Beltrami
regularized deblurring. We used λ = 107, β = 1, and a = 4,
and the deblurring was run using the second-order explicit
scheme (55) with its maximum stable time step starting with
the original blurred image as the initial guess. After 2038 iter-
ations, it achieved its tenth-of-a-decibel rounded steady-state
restored PSNR of 32.3dB. The original image was blurred
with a Gaussian kernel of σ = 3 to create an blurry initial
image with a signal-to-noise ratio of 25.6185dB. In Fig. 4,
we compare the accelerated PDE results, both visually and
quantitatively according to the restored signal-to-noise ratio,
with those obtained using primal–dual and L1 ADMM algo-
rithms for the same parameters λ = 107 and β = 1. ADMM
reached its tenth-of-a-decibel rounded steady-state restored
PSNR of 31.8dB after 2453 iterations, whereas primal–dual

reached its tenth-of-a-decibel rounded steady-state restored
PSNR of 27.8dB after 63 iterations (significantly fewer iter-
ations than both other algorithms, but also significantly lower
restored PSNR).

5.4 TV Denoising

We now consider the problem of total variation (TV) restora-
tion, which has a long history in image processing [20]. The
TV denoising problem corresponds to minimizing (57) in the
absence of a kernel K via the accelerated PDE (58). In this
case, state-of-the-art approaches include primal–dual meth-
ods [9] and the split Bregman method [12].

We again use the first-order explicit scheme (66), while
discretizing the spatial gradient and divergence separately
(using forward differences for the gradient and backward
differences for the divergence), and homogeneous Neumann
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Fig. 9 Comparison of logarithm of total energy versus CPU time for denoising the full 512×512 Lenna image with PDE acceleration, primal–dual,
and split Bregman. We used the optimal damping a = 2

√
λ from the linear analysis

Fig. 10 Comparison of logarithm of TV seminorm energy versus CPU time for denoising the full 512× 512 Lenna image with PDE acceleration,
primal–dual, and split Bregman

boundary conditions. Numerically, we set ∇u/|∇u| = 0
whenever ∇u = 0, so no regularization is required, though
we rarely encounter numerical gradients that are identically
zero. This choice of discretization makes the discrete diver-
gence the exact numerical adjoint of the discrete gradient.

We first consider a noisy square image, with dark region
u = 0.25 and light region u = 0.75 with additive Gaus-
sian noise with standard deviation σ = 0.3. Figure 5 shows
the noisy square and the total variation denoising with the
split Bregman algorithm and PDE acceleration. We compare
PDE acceleration, primal–dual, and split Bregman on slices
of the image at similar computation times in Figs. 6 and 7.

Notice the primal–dual algorithm blurs the edges slightly at
first, and they are restored only late in the flow (at t = 4
primal–dual has not yet converged). The PDE acceleration
algorithm does a better job preserving edges (they are never
blurred) compared to primal–dual and is slightly better than
split Bregman at preserving edges by time t = 4.

In the example above, we tookΔt = Δx/2 for simplicity.
Corroborating our analysis in Sect. 4.5, this explicit numer-
ical scheme (66) behaves stably in L∞ in our experiments,
meaning the solutions remain bounded in L∞ for all time,
even for larger time steps which still satisfy the necessary
conditions (60), (61), (62) or (63). For such larger time steps,

123



Journal of Mathematical Imaging and Vision

Fig. 11 Comparison of fidelity energy versus CPU time for denoising the full 512 × 512 Lenna image with PDE acceleration, primal–dual, and
split Bregman

Fig. 12 Comparison of PDE
acceleration, primal–dual, and
split Bregman for TV restoration
of a noisy Lenna image with
λ = 1000. Each algorithm was
run for 150 iterations, which
took 2.7 s for PDE acceleration,
3.3 s for primal–dual, and 28s
for split Bregman

Fig. 13 Comparison of PDE
acceleration, primal–dual, and
split Bregman for TV restoration
of a noisy Lenna image with
λ = 7000. Each algorithm was
run for 50 iterations, which took
0.85 s for PDE acceleration,
1.12 s for primal–dual, and
10.4 s for split Bregman
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Fig. 14 Initial (a) and final (b)
condition of denoising
experiment with variable
damping. Note the final result
does not change only the
number of iterations required

Fig. 15 Convergence experiment with variable damping for a Beltrami regularizer. Initial condition and converged result are given in Fig. 14

though, we find the flow does not fully converge, yet remains
stable via the nonlinear effect discussed in Sect. 4.5, but
instead tends to an oscillatory steady state. Figure 8 shows a
snapshot of the steady state for various values of the time step
Δt . For Δt ≤ Δx , the steady state is a reasonable denois-
ing; hence, we choose Δt = Δx or Δt = Δx/2 in most of
this paper. Note that this closely matches the suggested time
step bound in (67) for a quantization level of 1/255, given
the other parameters utilized here, which would come out to
Δt ≤ 1.189Δx .

Figures 9, 10, and 11 compare the energy decay against
CPU time for denoising the Lenna image with PDE acceler-
ation, primal–dual, and split Bregman algorithms. The noise
is additive zero mean Gaussian noise with standard deviation
σ = 0.1, and the images take values in the interval [0, 1]. We
note in Figs. 12 and 13 that PDE acceleration appears to yield
a better quality image for the same energy level compared to
primal–dual.
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Table 2 Coefficients and converge times of damping experiments for a 512 x 512 noisy Lena image

Damping Below optimal Optimal Above optimal Nesterov Critical

a Iterations a Iterations a Iterations a Iterations a Iterations

λ = 1000, β2 = 1 6.36 1000 63.6 100 636 400 3/t 250 1446 1000

5.5 Variable Damping

We now give further considerations to variable damping. In
Fig. 14, we show the initial condition and final converged
result for five separate damping experiments. Note that the
final result remains the same regardless of the damping coef-
ficient that is chosen for a. From the linear analysis in (16) and
our choice of λ = 1000 and β = 1 for the two tuning param-
eters, we have a = √

λ + βπ2 giving an optimal damping
of 63.6. In Fig. 15, we compare an optimally damped system
to a below optimal, above optimal, Nesterov, and critically
damped system. The damping coefficients and convergence
times in iterations are given inTable 2. The belowoptimal and
above optimal are each one order of magnitude away from
the optimal damping, respectively, and the critical damping
is the point at which the second-order accelerated scheme
is equivalent to gradient descent, i.e., the point at which the
damping completely cancels out themomentum leaving only
a first-order descent for the PDE.While the optimal damping
will always give the fastest convergence for the PDE, if one
is uncertain of the optimal damping, then using a greater than
optimally damped but less than critically damped systemwill
yield reasonable performance. While the Nesterov damping
does converge faster than the above optimally damped exam-
ple in Fig. 15, the increasing damping as a function of time
will yield degraded performance andwould likely necessitate
an additional stopping criterion. Although the below opti-
mally damped system is initially faster than the optimally
damped system, it is subject to large oscillations in energy
which while they do converge greatly slows down the final
convergence time.

6 Conclusion

We employed the novel framework of PDE acceleration,
based on momentummethods such as Nesterov and Polyak’s
heavy ball method, to calculus of variation problems defined
for general functions on R

n . The result was a very general
set of accelerated PDEs whose simple discretizations effi-
ciently solve the resulting class of optimization problems.
We further analyzed their use in regularized inversion prob-
lems,where gradient descent diffusion equations get replaced
by nonlinear wave equations within the framework of PDE

acceleration, with far more generous discrete time step con-
ditions.

We presented results of experiments on image process-
ing problems including Beltrami regularized denoising and
inpainting, and total variation (TV) regularized denoising and
deblurring. In all cases,we can achieve state-of-the-art results
with very simple algorithms; indeed, the PDE acceleration
update is a simple explicit forward Euler update of a nonlin-
ear wave equation. Future work will focus on problems such
as TV inpainting, where there is no fidelity, how to choose
the damping parameter adaptively to further accelerate con-
vergence, and applications to other problems in computer
vision, such as Chan–Vese active contours [11].
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