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I. EXPERIMENTS: SOME VISUALIZATION OF RESULTS

We include the visualizations for the ’Analysis of Robustness’ to noise experiments in the manuscript. Figure 1 corresponds
to the experiment in Figure 4 (left) in the manuscript, and Figure 2 corresponds to the experiment in Figure 4 (right) in the
manuscript.

II. DERIVATIONS AND PROOFS OF THEOREMS

A. Functional Gradients

We present first the definition of functional gradients so that we can define the gradient of the potential.

Definition 1 (Functional Gradients). Let U : Diff(Rn) → R. The gradient (or functional derivative) of U with respect to
φ ∈ Diff(Rn), denoted ∇U(φ), is defined as the ∇U(φ) ∈ TφDiff(Rn) that satisfies

δU(φ) · v =

∫
φ(Rn)

∇U(φ)(x) · v(x) dx (1)

for all v ∈ TφDiff(Rn). The left hand side is the directional derivative and is defined as

δU(φ) · v :=
d

dε
U(φ+ εv)

∣∣∣∣
ε=0

. (2)

Note that (φ+ εv)(x) = φ(x) + εv(φ(x)) for x ∈ Rn.

We now show the computation of the gradient for the illustrative potential used in this paper. First, let us consider the data
term U1(φ) =

∫
Rn |I1(φ(x))− I0(x)|2 dx then

δU1(φ) · δφ =

∫
Rn

2(I1(φ(x))− I0(x))DI1(φ(x))δ̂φ(x) dx =

∫
φ(Rn)

2(I1(x)− I0(ψ(x)))DI1(x)δφ(x) det∇ψ(x) dx,
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Fig. 1. Visual Comparison on Square Translation in Noise Experiment. The above show the visual results of the noise robustness experiment. For each
row group of images: the two original images, the warped image by gradient descent, and the warped image by accelerated gradient descent. The last two
images should resemble the second if the registration is correct.
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Fig. 2. Visual Comparison on Square Non-Uniform Scaling and Translation in Noise Experiment. The above show the visual results of the noise
robustness experiment. For each row group of images: the two original images, the warped image by gradient descent, and the warped image by accelerated
gradient descent. The last two images should resemble the second if the registration is correct.

where δ̂φ = δφ ◦ φ, ψ = φ−1 and we have performed a change of variables. Thus, ∇U1 = 2∇I1(I1 − I0 ◦ ψ) det∇ψ. Now
consider the regularity term U2(φ) =

∫
Rn |∇(φ(x)− x)|2 dx, then

δU(φ) = 2

∫
Rn

tr
(
∇(φ(x)− id)T∇δ̂φ(x)

)
dx = −

∫
Rn

∆φ(x)T δφ(x) dx =

∫
Ω

(∆φ)(ψ(x))T δφ(x) det∇ψ(x) dx.

Note that in integration by parts, the boundary term vanishes since we assume that φ(x) = x as |x| → ∞. Thus, ∇U2 =
(∆φ) ◦ ψ det∇ψ.

B. Stationary Conditions

Lemma 1 (Stationary Condition for the Mapping). The stationary condition of the action defined in Eqn 7 (manuscript) for
the mapping is

∂tλ+ div
(
vλT

)T
= (∇ψ)−1∇U(φ). (3)

Proof. We compute the variation of A (defined in Eqn 7 manuscript) with respect to the mapping φ. The only terms in the
action that depend on the mapping are U and the Lagrange multiplier term associated with the mapping. Taking the variation
w.r.t the potenial term gives

−
∫ ∫

φ(Rn)

∇U(φ) · δφdxdt.

Now the variation with respect to the Lagrange multiplier term:∫ ∫
φ(Rn)

λT [∂tδ̂ψ +D(δ̂ψ)v] dx dt = −
∫ ∫

φ(Rn)

[∂tλ
T + div

(
vλT

)
]δ̂ψ dx dt,

where we have integrated by parts, the div (·) of a matrix means the divergence of each of the columns, resulting in a row
vector, and δ̂ψ = δψ ◦ ψ. Note that we can take the variation of ψ(φ(x)) = x to obtain

δ̂ψ ◦ φ(x) + [Dψ(φ(x))]δ̂φ(x) = 0,

or
δ̂ψ(y) = −[Dψ(y)]δφ(y).

Therefore,
δA · δφ =

∫ ∫
φ(Rn)

{
(∇ψ)

[
∂tλ+ div

(
vλT

)T ]−∇U(φ)
}
· δφdxdt. (4)

Lemma 2 (Stationary Condition for the Velocity). The stationary condition of the action in Eqn. 7 (manuscript) arising from
the velocity is

ρv + (∇ψ)λ− ρ∇µ = 0. (5)



3

Proof. We compute the variation w.r.t the kinetic energy:

δT · δv =

∫
φ(Rn)

ρv · δv dx.

The variation of the Lagrange multiplier terms is∫ ∫
φ(Rn)

λT (Dψ)δv − ρ∇µ · δv dxdt =

∫ ∫
φ(Rn)

[(∇ψ)λ− ρ∇µ] · δv dxdt.

Therefore,
δA · δv =

∫ ∫
φ(Rn)

[ρv + (∇ψ)λ− ρ∇µ] · δv dx dt. (6)

Lemma 3 (Stationary Condition for the Density). The stationary condition of the action in Eqn. 7 (manuscript) arising from
the velocity is

∂tµ+ (Dµ)v =
1

2
|v|2. (7)

Proof. Note that the terms that contain the density in Eqn 7 (manuscript) are the kinetic energy and the Lagrange multiplier
corresponding to the density. We see that

δA · δρ =

∫ ∫
φ(Rn)

1

2
|v|2δρ− (∂tµ+∇µ · v)δρdxdt, (8)

which yields the lemma.

C. Velocity Evolution

Lemma 4. Given that (∇ψ)λ = w, we have that

∂tλ+ (Dλ)v + λdiv (v) = (∇ψ)−1[∂tw + (Dw)v + (∇v)w + wdiv (v)] (9)

Proof. Define the Hessian as follows:

[D2ψ]ijk = ∂2
xixj

ψk, [D2ψ(a, b)]k =
∑
ij

∂2
xixj

ψkaibj .

We compute
{D[(∇ψ)λ]}ij = ∂xj

[(∇ψ)λ]i = ∂xj

∑
l

∂xi
ψlλl =

∑
l

(∂2
xjxi

ψlλl) + ∂xi
ψl∂xj

λl.

Therefore,
D[(∇ψ)λ] = D2ψ(·, ·) · λ+ (∇ψ)(Dλ)

Since D[(∇ψ)λ] = Dw then solving for Dλ gives

Dλ = (∇ψ)−1[Dw −D2ψ(·, ·) · λ],

so
(Dλ)v = (∇ψ)−1[(Dw)v −D2ψ(·, v) · λ]. (10)

Now differentiating (∇ψ)λ = w w.r.t t, we have

(∇∂tψ)λ+ (∇ψ)∂tλ = ∂tw, or ∂tλ = (∇ψ)−1[∂tw − (∇∂tψ)λ]

Note that ∂tψ = −(Dψ)v so
∂tλ = (∇ψ)−1 {∂tw +∇[(Dψ)v]λ} . (11)

Now computing ∇[(Dψ)v] yields

{∇[(Dψ)v)]}lk = ∂xl

∑
i

∂xi
ψkvi =

∑
i

∂xl
∂xi

ψkvi + ∂xi
ψk∂xl

vi.

Then multiplying the above matrix by λ gives

{∇[(Dψ)v)]λ}l =
∑
ik

∂xl
∂xi

ψkviλk + ∂xi
ψk∂xl

viλk,
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which in matrix form is

∇[(Dψ)v)]λ = D2ψ(·, v) · λ+ (∇v)(∇ψ)λ = D2ψ(·, v) · λ+ (∇v)w

Therefore, (11) becomes
∂tλ = (∇ψ)−1[∂tw +D2ψ(·, v) · λ+ (∇v)w].

Combining the previous with (10) and noting that λdiv (v) = (∇ψ)−1wdiv (v) yields

∂tλ+ (Dλ)v + λdiv (v) = (∇ψ)−1[∂tw + (Dw)v + (∇v)w + wdiv (v)].

Lemma 5. If w = ρ(∇µ− v), then

∂tw + (Dw)v + (∇v)w + wdiv (v) = −ρ[∂tv + (Dv)v]. (12)

Proof. Differentiating w = ρ(∇µ− v), we have

∂tw = (∂tρ)(∇µ− v) + ρ(∇∂tµ− ∂tv)

Dw = (∇µ− v)(Dρ) + ρ[D(∇µ)−Dv].

Therefore,

∂tw + (Dw)v + (∇v)w + wdiv (v) = (∇µ− v)(∂tρ+∇ρ · v) + ρ[∇∂tµ− ∂tv +D(∇µ)v − (Dv)v]

+ ρ(∇v)(∇µ− v) + ρ(∇µ− v)div (v)

= (∇µ− v)(∂tρ+∇ρ · v + ρdiv (v))

+ ρ[∇∂tµ− ∂tv +D(∇µ)v − (Dv)v + (∇v)(∇µ− v)].

Note that ∂tρ+∇ρ · v + ρdiv (v) = ∂tρ+ div (ρv) = 0, due to the continuity equation. Therefore,

∂tw + (Dw)v + (∇v)w + wdiv (v) = ρ[−∂tv − (Dv)v − (∇v)v +∇∂tµ+D(∇µ)v + (∇v)(∇µ)]

= ρ {−∂tv − (Dv)v − (∇v)v +∇[∂tµ+ (Dµ)v]} .

By the stationary condition for the density, ∂tµ+(Dµ)v = 1/2|v|2, so ∇[∂tµ+(Dµ)v] = (∇v)v, which gives the lemma.

Theorem II.1 (Velocity Evolution). The evolution equation for the velocity arising from the stationarity of the action integral
is

ρ[∂tv + (Dv)v] = −∇U(φ). (13)

Proof. This is a combination of Lemmas 1, 4, and 5.

D. Stationary Conditions for the Dissipative Case

Theorem II.2 (Stationary Conditions for the Path of Least Action: Dissipative Case). The stationary conditions of the path
for the action

A =

∫
[aT (v)− bU(φ)] dt+

∫ ∫
Rn

λT [∂tψt + (Dψ)v] dxdt−
∫ ∫

Rn

[∂tµ+∇µ · v] ρdxdt, (14)

are

∂tλ+ (Dλ)v + λdiv (v) = b(∇ψ)−1∇U(φ) (15)
aρv + (∇ψ)λ− ρ∇µ = 0 (16)

∂tµ+∇µ · v =
1

2
a|v|2. (17)

Proof. Note that

∇[bU ](φ) = b∇U(φ)

δ[aT ] · δρ =

∫
φ(Rn)

1

2
a|v|2δρdx

δ[aT ] · δv =

∫
φ(Rn)

aρv · δv dx.
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Therefore, using (4) and replacing ∇U(φ) with b∇U(φ), we have

δA · δφ =

∫ ∫
φ(Rn)

{
(∇ψ)

[
∂tλ+ div

(
vλT

)T ]− b∇U(φ)
}
· δφdxdt,

which yields the stationary condition on the mapping. Also, updating (6) yields

δA · δv =

∫ ∫
φ(Rn)

[aρv + (∇ψ)λ− ρ∇µ] · δv dx dt,

which yields the stationary condition for the velocity. Finally, updating (8) yields

δA · δρ =

∫ ∫
φ(Rn)

1

2
a|v|2δρ− (∂tµ+∇µ · v)δρdxdt,

and that yields the last stationary condition.

Theorem II.3 (Evolution Equations for the Path of Least Action: Dissipative Case). The evolution equations for the stationary
conditions of the action in (14) is

ρ[∂t(av) + a(Dv)v] = −b∇U(φ). (18)

Proof. Let w = ρ(∇µ− av) then

∂tw = (∂tρ)(∇µ− av) + ρ(∇∂tµ− ∂t(av))

Dw = (∇µ− av)(Dρ) + ρ[D(∇µ)− aDv].

Then

∂tw + (Dw)v + (∇v)w + wdiv (v) = g(∇µ− av)(∂tρ+∇ρ · v) + ρ[∇∂tµ− ∂t(av) +D(∇µ)v − a(Dv)v]

+ ρ(∇v)(∇µ− av) + ρ(∇µ− av)div (v)

= (∇µ− av)(∂tρ+∇ρ · v + ρdiv (v))

+ ρ[∇∂tµ− ∂t(av) +D(∇µ)v − a(Dv)v + (∇v)(∇µ− av)]

= ρ {−∂t(av)− a(Dv)v − a(∇v)v +∇[∂tµ+ (Dµ)v]}
= ρ {−∂t(av)− a(Dv)v} .

By Lemma 4 and the previous expression, we have our result.

E. Discretization

We present the discretization of the velocity PDE Eqn. 12 (manuscipt) first. In one dimension, the terms involving v are
Burger’s equation, which is known to produce shocks. We thus use an entropy scheme. Writing the PDE component-wise, we
get

∂tv1 = −1

2
∂x1(v1)2 − v2∂x2v1 −

3

t
v1 −

1

ρ
(∇U)1 (19)

∂tv2 = −1

2
∂x2(v2)2 − v1∂x1v2 −

3

t
v2 −

1

ρ
(∇U)2, (20)

where the subscript indicates the component of the vector. We use forward Euler for the time derivative, and for the first term
on the right hand side, we use an entropy scheme for Burger’s equation which results in the following discretization:

∂x1
(v1)2(x) ≈ max{v1(x), 0}2 −min{v1(x), 0}2 + min{v1(x1 + ∆x, x2), 0}2 −max{v1(x1 + ∆x, x2), 0}2,

where ∆x is the spatial sampling size, and the ∂x2
(v2)2 follows similarly. For the second term on the right hand side of (19),

we follow the discretization of a transport equation using an up-winding scheme, which yields the following discretization:

v2(x)∂x2
v1(x) ≈ v2(x) ·

{
v1(x1, x2)− v1(x1, x2 −∆x) v2(x) > 0

v1(x1, x2 + ∆x)− v1(x1, x2) v2(x) < 0
.

With regards to the gradient of potential, if we use the potential in Eqn. 13 (manuscript), then all the derivatives are discretized
using central differences, as the key term is a diffusion. The step size ∆t/∆x < 1/maxx{|v(x)|, |Dv(x)|}.

The backward map ψ evolves according to a transport PDE Eqn. 6 (manuscript), and thus an up-winding scheme similar to
the transport term in the velocity term is used. For the discretization of the continuity equation, we use a staggered grid (so
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that the values of v are defined in between grid points and ρ is defined at the grid points). The discretization is just the sum
of the fluxes coming into the point:

−div (ρ(x)v(x)) ≈
2∑
i=1

[
−vi(x)

{
ρ(x) vi(x) > 0

ρ(x+ ∆xi) vi(x) < 0
+ vi(x−∆xi)

{
ρ(x−∆xi) v1(x−∆xi) > 0

ρ(x) v1(x−∆xi) < 0

]
,

where ∆xi denotes the vector of the spatial increment ∆x in the ith coordinate direction, v1(x) denotes the velocity defined
at the midpoint between (x1, x2) and (x1 + ∆x, x2), and v2(x) denotes the velocity defined at the midpoint between (x1, x2)
and (x1, x2 + ∆x). The term ∂tρ(x) is discretized with forward Euler. This scheme is guaranteed to preserve mass.


