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Abstract—We present a method to track the shape of an object from video. The method uses a joint shape and appearance model

of the object, which is propagated to match shape and radiance in subsequent frames, determining object shape. Self-occlusions

and dis-occlusions of the object from camera and object motion pose difficulties to joint shape and appearance models in tracking.

They are unable to adapt to new shape and appearance information, leading to inaccurate shape detection. In this work, we model

self-occlusions and dis-occlusions in a joint shape and appearance tracking framework. Self-occlusions and the warp to propagate

the model are coupled, thus we formulate a joint optimization problem. We derive a coarse-to-fine optimization method, advantageous

in tracking, that initially perturbs the model by coarse perturbations before transitioning to finer-scale perturbations seamlessly. This

coarse-to-fine behavior is automatically induced by gradient descent on a novel infinite-dimensional Riemannian manifold that we

introduce. The manifold consists of planar parameterized regions, and the metric that we introduce is a novel Sobolev metric.

Experiments on video exhibiting occlusions/dis-occlusions, complex radiance and background show that occlusion/dis-occlusion

modeling leads to superior shape accuracy.

Index Terms—Object segmentation from video, object tracking, deformable templates, occlusions, shape metrics, optical flow

Ç

1 INTRODUCTION

IN many applications (e.g., post-production of motion pic-
tures, 3D video, robotics, augmented reality), it is impor-

tant to determine the precise shape of the object of interest
at each frame of a video. Many existing tracking methods
that are designed to obtain object shape (e.g., [1], [2], [3], [4])
use a step that aims to partition the image into object and
background by discriminating elementary image statistics
(e.g., color, edges, texture, motion) into two groups. These
approaches have the advantage of pixel-wise accuracy
when the object and the background have simple and dis-
tinguishable radiance. Additional constraints from motion
models (e.g., [5], [6]) and prior object shape information
(e.g., [2]) have led to improvements over a basic partitioning
approach in more complex scenarios. However, in tracking
objects with complex radiance in a cluttered background,
the underlying assumption that the image (or even a neigh-
borhood around the object) consists of elementary statistics
that fit in two groups is not always valid. Often times that
assumption, even if augmented with additional constraints,
leads to errors in shape detection.

One way to cope with complex object radiance is to use a
dynamic model of the object shape and radiance. The model
is a template, which is the dense radiance function of the
object defined on the region of the projected object. The tem-
plate at frame t is deformed to match the object shape and
radiance in frame tþ 1, thereby obtaining the object seg-
mentation in frame tþ 1. We refer to this approach as joint
shape/appearance matching. One difficulty in deforming a
template to match the object in the next frame is that object
and camera motion may induce parts of the object to come
into view (dis-occlusions) and go out of view (occlusions). If
the template is not updated to account for occlusions and
dis-occlusions, the deformed template may not capture the
object shape accurately.

This work addresses the problem of self-occlusions and
dis-occlusions within a joint shape/appearance matching
framework. Our approach computes the deformation of the
template to match the next frame while detecting occlusions
of the template and dis-occluded parts of the object. The
template is updated to remove the occlusion and include
the dis-occluded region. Since the frame-rate of typical
video induces non-infinitesimal deformation of the pro-
jected object between frames, we model the deformation as
the integration of a time-varying vector field following a
standard representation from fluid mechanics [7]. In con-
trast to standard representations, since we are interested in
only the deforming the object of interest, the time varying
vector field is defined on an evolving region (not the entire
image domain). Following observations in [8] for computing
optical flow, we note that an occlusion is the part of the tem-
plate that does not deform to the next frame, and therefore,
occlusions and the deformation are coupled. We thus setup
a joint optimization problem for the deformation and the
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occlusion. We note that dis-occlusions can only be detected
with prior assumptions on the object, and show that a self-
similarity prior on the object radiance can be used to deter-
mine dis-occlusions.

The optimization problem for the deformation and occlu-
sion is non-convex and cannot easily be written in a convex
form since the deformation is non-infinitesimal, precluding
linearization used in optical flow methods. Therefore, we
introduce a novel coarse-to-fine optimization method that
avoids many undesirable local minima. The method is a
gradient descent on a novel Riemannian manifold. The
manifold consists of parameterized regions, represented as
warps from an initial region to arbitrary regions defined in
the plane. The choice of regions is suitable since the object
in the imaging plane is described by both its shape and its
radiance. The latter is defined on a region in the imaging
plane. We introduce a Sobolev-type Riemannian metric
defined on vector fields on regions. The gradient descent
with respect to this metric induces a beneficial property for
tracking: an initial region is deformed according to coarse
deformations before transitioning automatically and seam-
lessly to finer deformations.

1.1 Key Contributions

Our main contributions are two-fold: modeling and theory.
The first main contribution is to formulate self-occlusions
and dis-occlusions in tracking by joint shape/appearance
matching. Occlusions have been modeled in shape tracking,
but existing works do so with simpler models of radiance,
i.e., color histograms (e.g., [3]), or are layered models (e.g.,
[9]) that can cope with occlusions of one layer on another,
but not self-occlusions or dis-occlusions. We also solve dis-
occlusions with the similarity prior mentioned above. The
second main contribution is a novel optimization scheme
for energies defined on deformations that has an automatic
coarse-to-fine behavior. This scheme is based on new theo-
retical advances, including our novel Riemannian manifold
of regions, and a novel Sobolev metric on infinitesimal per-
turbations of regions.

This work extends our conference paper [10]. One exten-
sion in this paper (Section 5) is defining a novel Sobolev
metric on a new Riemannian manifold of regions, leading to
the automatic coarse-to-fine optimization scheme. In con-
trast, the scheme in [10] was only an approximation of the
coarse-to-fine property, and not based on a unified energy.
Also, the new optimization avoids a joint problem for the
infinitesimal deformation (not the large deformation),
which speeds up the technique by a factor of 2.

2 RELATED WORK

2.1 Tracking and Occlusions

A video consists of a sequence of images, and thus, many
approaches for shape tracking (e.g., [1], [2], [3], [5], [11])
have built on image segmentation techniques such as active
contours (e.g., [12], [13], [14], [15], [16], [17]) and more
recently, convex relaxations of active contour energies (e.g.,
[18], [19]). These approaches aim to determine the object of
interest and the background by separating elementary
image statistics (e.g., color, texture, edges, motion) into two
groups. However, when the object has complex radiance

and is within cluttered background, grouping elementary
image statistics leads to errors in the segmentation. Some
methods try to resolve this issue in tracking by using space-
varying local statistics to perform the grouping (e.g., [20]).
Other methods use motion models to predict the object loca-
tion/shape in the next frame (e.g., [1], [5], [6], [21]) to pro-
vide more accurate initialization to frame partitioning.
Dynamic models of the shape are constructed from training
data in [2], extending active shape and appearance models
[22], and used to constrain the solution of frame partition-
ing. Training data is not always available. While these
extensions provide improvements to basic frame partition-
ing, complex object radiance and cluttered background still
pose a challenge.

Our approach uses a model of the object that is a dense
radiance function defined on the projected object. Other
tracking methods (e.g., [23], [24]) also use dense radiance
functions. However, they only obtain bounding boxes around
the object, and do not provide shape. Joint dynamicmodels of
radiance and shape for tracking have been considered in [9],
[25]. However, [25] does not consider occlusions, and while
[9] considers occlusions of an object by another object, it does
not consider self-occlusions and dis-occlusions.

Since occlusions arise from object/camera motion, occlu-
sions have been computed from optical flow. In [26], [27],
occluded regions are defined to be the set there the compo-
sition of the forward and backward optical flow is not the
identity map. In [28], [29], occlusions are detected by
detecting regions where the optical flow residual is large.
Occlusion boundaries are detected by discontinuities of
optical flow in [30]. Noting that reliable optical flow
depends on knowledge of occluded regions, and that occlu-
sions are regions where optical flow does not exist, joint
estimation of the optical flow and occlusions is performed
in [8]. In [31], dense trajectory estimation across multiple
frames with occlusions is solved. We use ideas of occlusions
in [8], and apply them to shape tracking where considera-
tions must be made for evolving the shape, large deforma-
tions, and dis-occlusions.

2.2 Shape Metrics

The optimization technique for deformation and occlusion
estimation that we introduce is a gradient descent on a Rie-
mannian shape manifold. Thus, our work relates to the liter-
ature on shape metrics defined on a Riemannian manifold of
shapes. There have been two primary uses for shape met-
rics. One is shape optimization, that is, minimization of ener-
gies defined on shapes, e.g., to segment shapes from
images. The other is shape matching and analysis, i.e., comput-
ing morphs between already segmented shapes or decom-
posing shapes into constituent components (e.g., via PCA).

Active contours (e.g., [12], [14], [15], [17], [32]), where
shape is defined as a planar contour, are an instance of
shape optimization. Active contours are usually based on a
gradient descent of an energy, and the gradient depends on
a choice of a metric on perturbations of planar contours.
The metric typically chosen is a geometric L2 metric. Other
metrics for active contours, in particular Sobolev-type
metrics on contours, were considered by [33], [34]. These
metrics favor spatially regular flows for gradient descent
and avoid undesirable local minima due to fine structures
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in an image. In [35], it was shown that Sobolev-type metrics
are suited for tracking applications since they have an auto-

matic coarse-to-fine property in comparison to the L2 met-
ric. The new Riemannian metric introduced in this paper is
motivated by the coarse-to-fine property noticed in [35].
The energies considered in this paper are not defined on con-
tours, but on parameterized regions since the radiance of an
object is defined on a region. Thus, the framework of [35]
does not apply. We define a new Riemannian manifold and
a Sobolev-type metric on parameterized regions, i.e., warps
of a region to arbitrary regions.

In shape matching and analysis, several Riemannian met-
rics have been proposed. In [36], an L2 Riemannian metric is
proposed on the tangent vector field of planar curves. In [37],
[38], Sobolev-type metrics are proposed on planar curves,
which induces meaningful shape morphings as geodesic
paths (shortest paths on the manifold of shapes), unlike the

L2 metric, which does not yield geodesics [39], [40]. Deform-
able templates [41], [42], [43] defines a Riemannian manifold
on the space of warps (diffeomorphisms) from the entire
domain of the image to itself. Shape matching can be per-
formed by diffeomorphisms that map an indicator function
(defined on the entire domain of the image) of one shape
onto another. Sobolev metrics on vectors fields of the fixed
domain are defined, and geodesic paths are computed.

Our work relates to deformable templates, since we also
define a Riemannian metric on a space of warps. However,
there are two differences, besides the obvious fact that we
are interested in object tracking rather than image registra-
tion or shape matching of already segmented shapes as in
[41], [42], [44], [45]. First, our set of warps are defined on a
region of an object to all regions in the imaging domain.
This choice is natural since we model only the object of
interest. Modeling the entire image presents difficulties, as
the image consists of objects and the background that have
differing motion. The smoothness assumption on entire
domain made in [41], [42], [44] is more suited to medical
images than video from natural scenes where there are dis-
continuities in deformation between boundaries of objects.
Moreover, occlusions are not considered in [41], [42], [44].
The second difference from [41], [42] is that we are not inter-
ested in computing geodesic paths on the Riemannian man-
ifold of warps, rather we compute a gradient descent on
warps. The latter may be computationally more efficient
since computing geodesics requires searching for a minimal
path over all paths, whereas a gradient descent simply
chooses a path based on the energy and the metric. The gra-
dient descent with respect to the metric we introduce also
induces a coarse-to-fine evolution of the region.

Lastly, the work of [46] introduces a Sobolev-type Rie-
mannian metric on regions for shape matching rather than
shape optimization, which is the focus of this work. The par-
ticular form of the Sobolev-metric that we construct is dif-
ferent than [46] as it has a natural decomposition of
perturbations of a region into translations and orthogonal
deformations, which is well suited for object tracking.

3 DYNAMIC MODEL OF THE PROJECTED OBJECT

We now define a dynamic model of the object shape and
radiance in the imaging plane. From the model, the notion

of occlusions and dis-occlusions is clear. The model is also
needed for the recursive estimation algorithm in Section 7.

Let V � R2, and I : f1; 2; . . . ; Ng �V ! Rk denote the
image sequence (N frames) that has k channels. We denote
frame t by It. The camera projection of visible points on the
3D object at time t is denoted by Rt, which we refer to as
“shape” or region. The projected object’s radiance is denoted

at, and at : Rt ! Rk. Our dynamic model of the region and
radiance (see Fig. 1 for a diagram) is

Rtþ1 ¼ wtðRtnOtÞ [Dtþ1; (1)

atþ1ðxÞ ¼ atðw�1
t ðxÞÞ þ htðxÞ; x 2 wtðRtnOtÞ;

adtþ1ðxÞ; x 2 Dtþ1;

�
(2)

where Ot denotes the subset of Rt that is occluded from
view in frame tþ 1, Dtþ1 denotes the subset of the projected
object that is dis-occluded (comes into view) at frame tþ 1,

adtþ1 : Dtþ1 ! Rk is the radiance of the dis-occluded region,

and wt maps points that are not occluded in Rt to Rtþ1 in
the next frame. The warp wt is an invertible map on the un-
occluded region RtnOt, which is a transformation arising
from viewpoint change and deformation. The warp will be
extended to all of Rt (see Section 4.1 for details).

The region RtnOt, is warped by wt and the dis-occlusion
of the object, Dtþ1, is appended to the warped region to
form Rtþ1. The relevant portion of the radiance, atjðRtnOtÞ
is transferred via the warp wt to Rtþ1, as brightness con-
stancy, and noise added. A newly visible radiance is
obtained in Dtþ1. The noise models deviation from bright-
ness constancy, e.g., non-Lambertian reflectance, small illu-
mination change, noise.

Organization of the rest of the paper. A template (a0; R0) of the
object is given. Our goal is, given an estimate of Rt, at, and
Itþ1 to estimate Rtþ1 in Itþ1. In Section 4.1, we formulate an
optimization problem to determine wt and the occlusion Ot

given at;Rt, and Itþ1. In Section 4.2, we formulate an optimi-
zation problem to determine the dis-occlusion Dtþ1 given
wtðRtnOtÞ and Itþ1. The joint energy for wt and Ot presented
in Section 4.1 involves an alternating optimization. In
Section 5, we present a new general optimization scheme for
energies defined onwarps, which requires introducing a new
Riemannian manifold and a novel Sobolev-type region based
metric. The induced gradient descent is shown to have a
coarse-to-fine property. This optimization scheme is a

Fig. 1. Diagram illustrating our dynamic model. Left: template ðRt; atÞ
(non-gray), right: Itþ1. Self-occlusions Ot, dis-occlusions Dtþ1 and its

radiance atþ1
d , the region at frame tþ 1 isRtþ1 (inside the green contour),

and the warp is wt, which is defined in RtnOt. The curved black line is a
self-occlusion since the arm moves towards the left.
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relevant sub-problem for the energy of interest in Section 4.1.
The full optimization scheme for the joint energy in the warp
and occlusion is presented in Section 6.1. The optimization
for the dis-occlusion energy is presented in Section 6.2.
Finally, in Section 7, we derive a recursive estimation proce-
dure and integrate all steps. See Fig. 2 for a system overview.

4 ENERGY FORMULATION

The first section in this section formulates a joint energy for
the warp of a template to an unknown subset in an image,
and the occluded subset of the template. The next section
formulates an energy for the dis-occlusion.

4.1 Joint Energy for the Warp and Occlusion

We model the warp wt as a diffeomorphism from RtnOt, the
co-visible region, to an unknown target set in the domain of
Itþ1, which must be determined. A diffeomorphism is a
smooth invertible non-rigid transformation whose inverse is
also smooth. An occlusion of region Rt is the subset of Rt

that goes out of view in frame tþ 1. We compute occlusions
as the subset of Rt that does not register to Itþ1 under a viable
warp. Thus, the occlusion depends on the warp, but to deter-
mine an accurate warp, data from the occluded region must
be excluded, hence a circular problem. Therefore, occlusion
detection and registration should be computed jointly.

We avoid subscripts t for ease of notation in the rest of
this section, and all sections until Section 7. Given a region

R � V, the radiance a : R ! Rk, and I : V ! Rk, we formu-
late the problem of computing the occluded part O of R, the
warp w, and wðRnOÞ. Note that these quantities must satisfy

IðxÞ ¼ aðw�1ðxÞÞ þ hðxÞ for x 2 wðRnOÞ, where h is the
noise modeled in (2).

The warp w is a diffeomorphism in the un-occluded
regionRnO. For ease in the optimization, we considerw to be
extended to a diffeomorphism on all of R. The warp of inter-
est will be the restriction to RnO. We setup an optimization
problem to determine w so that wðRnOÞ is the object region
in I, i.e., ajRnO should correspond to IjwðRnOÞ via the warp
w. We formulate the energy, to beminimized inO;w, as

EoðO;w; I; a; RÞ ¼
Z
R

fðwðxÞ; xÞ dxþ boAreaðOÞ; (3)

fðy; zÞ ¼ rððIðyÞ � aðzÞÞ2ÞxOðzÞ; (4)

where bo > 0 is a weight, xOðxÞ ¼ 1� xOðxÞ, xO is the indi-
cator or characteristic function of O, and r : Rþ ! R is some
monotonic function. For example, rðxÞ ¼ x for a quadratic

penalty or rðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi
xþ d

p
, where d > 0 for a robust penalty

[47]. The choice of rwill depend on the noise model h in (2).
The first term penalizes deviation of the object radiance, a,
to the pull-back of the image intensity I jwðRÞ under w onto
the region R. The factor xOðxÞ implies that w is only
required to warp the radiance to match the image intensity
I in the un-occluded region RnO. The occlusion area penalty
is needed to avoid the trivial solution O ¼ R. Given a mod-
erate frame rate of the camera, it is realistic to assume that
the occlusion is small in area compared to the object.

Due to the aperture problem, multiple warps w can
optimize the energy Eo. Typically a regularization term is
added directly into the energy (e.g., for small warps as in
optical flow [48], or for large warps [41]), changing the
energy. In contrast, we regularize the flow optimizing Eo in a
way that optimizes Eo without changing it, leading to a
favorable solution. This is described in Section 5.

4.2 Energy Formulation of Dis-Occlusion

We now describe the energy formulation of the dis-occlu-
sion Dtþ1 � V of the object at frame tþ 1 given the warped
co-visible region wtðRtnOtÞ determined from the optimiza-
tion of the energy in the previous section, and the image
Itþ1. To determine the dis-occluded region of the object, the
region of the object that comes into view in the next frame,
it is necessary to make a prior assumption on the 3D object.

A realistic assumption is self-similarity of the 3D object’s
radiance, that is, the radiance of the 3D object in a patch is
similar to other patches. To translate this prior into deter-
mining the dis-occlusion of the object Dtþ1, we assume that
the image in the dis-occluded region of the object is similar
to parts of the image Itþ1 in wtðRtnOtÞ. For computationally
efficiency, we assume similarity to close-by parts of the tem-
plate. This is true in many cases, and is effective as shown
in the experiments.

Although dis-occlusions in image Itþ1 are parts of the
image that do not correspond to It, i.e., an occlusion back-
ward in time, these parts may be a dis-occlusion of the
object or the background. It is not possible to determine with-
out additional priors which dis-occlusions are of the object
of interest. Our method works directly from the prior with-
out having to compute a backward warp.

We now setup an optimization problem for the dis-occlu-
sion. To simplify notation, we avoid subscripts in Dtþ1 and
Itþ1, and denote R0 ¼ wtðRtnOtÞ. The energy is

EdðDÞ ¼ �
Z
D

log pðxÞ dxþ bdAreaðDÞ; (5)

Fig. 2. Illustration of frame processing in our algorithm. (a): Estimate at frame t of the shape and radiance ðat; RtÞ, and the next image Itþ1. (b): Simul-
taneous non-rigid warping and occlusion estimation is performed (first image: warped template at � wt, second: boundary of warped template in Itþ1,
third: warped occlusion wtðOtÞ determined, fourth: warped template with warped occlusion removed wtðRtnOtÞ, fifth: boundary of wtðRtnOtÞ). (c):
Dis-Occlusion Dtþ1 in Itþ1 determined from input wtðRtnOtÞ. (d): Final shape and radiance ðatþ1; Rtþ1Þ in frame tþ 1 (adding dis-occlusion Dtþ1 to
wtðRtnOtÞ). Shaded gray regions indicates not defined.
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where D � VnR0, pðxÞ � 0 denotes the likelihood that
x 2 VnR0 belongs to the dis-occluded region, and bd > 0. The
dis-occluded region, assuming a moderate frame rate, has
small area compared to the object, hence the penalty on area.

Let clðxÞ denote the closest point of R0 to x, and let BrðxÞ
denote the ball of radius r about the point x. We choose pðxÞ
to have two components (see diagram in Fig. 3.). One meas-
ures the fit of IðxÞ to the local distribution of I within
BrðclðxÞÞ \R0 versus the background BrðclðxÞÞ \ fdR0 > "g
in I, and the second that measures nearness of x to R0:

pðxÞ / exp � dR0 ðxÞ2
2s2

d

þ log
pclðxÞ;fðIðxÞÞ
pclðxÞ;bðIðxÞÞ

" #
; (6)

where dR0 ðxÞ indicates the euclidean distance from x to R0,
sd > 0 is a weighting factor, and pclðxÞ;f ; pclðxÞ;b are Parzen

estimates of the intensity distribution of I in the foreground
BrðclðxÞÞ \R0 (respectively in the background BrðclðxÞÞ \
fdR0 > "g). A Parsen estimator [49] robustly estimates a
distribution from samples by summing kernels (e.g., Gaus-
sians) centered at the samples. " is chosen large enough so
that the region includes some background beyond the dis-
occlusion.

5 COARSE-TO-FINE OPTIMIZATION OF ENERGIES

DEFINED ON WARPS

In order to optimize Eo, we will apply an alternating
scheme, alternating between optimization of O and w. This
will be presented in Section 6. This section will focus on
optimizing an energy defined on warps of the form

EðwÞ ¼
Z
R

fðwðxÞ; xÞ dx; (7)

where f : V�V ! R. Note that this sub-problem is rele-
vant in optimizing Eo. The optimization with respect to w is
done using a steepest descent scheme. Steepest descent
depends on a Riemannian metric on the space of warps, w.
The Riemannian metric is defined on infinitesimal perturba-
tions of the warp w, and the metric controls the type of
motions/deformations that are favored in optimizing the
energy. We will design a novel Sobolev-type metric, and
use it in the steepest descent of E.

The motivation for the design of this metric comes from
the active contours literature [33], [35]. It was shown that
Sobolev-type metrics defined on curves (boundaries of
regions) result in flows that optimize the energy in a coarse-
to-fine manner, initially optimizing the energy with respect

to coarse perturbations, and then moving to finer perturba-
tions when coarse deformations no-longer optimize the
energy. This coarse-to-fine behavior is automatically
induced by the gradient descent with respect to the Sobolev
metric. Motivated by this coarse-to-fine property, we design
a new-Sobolev metric that is suited for energies defined on
warps, that is, a region-based metric. The metric used in [33],
[35] does not apply to the energy E in this paper as E is
defined on the space of warps, and the point-wise corre-
spondence of the interior is essential.

5.1 Sobolev Region-Based Metric and Gradient

We start by presenting some theoretical background so that
the metric can be defined and the gradient of the energy
with respect to the metric can be computed. The space
where our energy is defined is

M ¼ fw : R ! V jw : R ! wðRÞ is a diffeomorphismg; (8)

where R � V � R2 is a compact set with smooth boundary,
and thus also the range of w’s are compact and have smooth
boundary. The range of w 2 M need not be all of V, but
rather an arbitrary subset of V. We refer to M as the space of
parameterized regions since elements w 2 M parameterize
regions wðRÞ via the fixed region R. Note that the parame-
terization of a region is important as the energy of interest
E depends on the parameterization.

Infinitesimal perturbations of w are smooth vector fields

h : R ! R2, which form the tangent space to w and is
denoted TwM. An infinitesimal perturbation of w is w",
given by

w"ðxÞ ¼ wðxÞ þ "hðxÞ: (9)

Note that if " > 0 is small enough, then w" 2 M, i.e., w" is
a diffeomorphism, which implies that M is a manifold.
Thus, we may define a Riemannian metric on TwM,
which in turn allows us to define gradients of the energy.
Perturbations h are defined on R, and by right translation,

i.e., h � w�1 : wðRÞ ! R2, they are also defined on wðRÞ. We
now specify an inner product on TwM, which makes M a
Riemannian manifold:

Definition 1 (Sobolev-type Inner Product on M). The inner
product on the set of perturbations of w (i.e., the metric) that
we consider is defined as follows:

h1; h2h iSob;w¼ ĥ1 � ĥ2 þ a

Z
wðRÞ

trfrĥ1ðxÞTrĥ2ðxÞg dx;

(10)

where a > 0, ĥ :¼ h � w�1 when h : R ! R2, rĥ1ðxÞ denotes
the spatial Jacobian of ĥ1ðxÞ, tr denotes the trace of a matrix,
dx is the area measure on wðRÞ, and

ĥ ¼ 1

jwðRÞj
Z
wðRÞ

ĥðxÞ dx: (11)

The first term in (10) uses the mean value of the perturba-
tions rather than the L2 inner product of the perturbations
as in standard Sobolev inner products [50]. This change
is for convenience in the algorithm that we present to
optimize E, and an easy decomposition of the gradient

Fig. 3. Diagram of quantities used in the likelihood pðxÞ of a dis-occluded
pixel. The dark gray region is the dis-occlusion to be determined. Light
gray region is R0, region before the dis-occlusion is determined. A pixel x
within the band f0 < dR0 	 "g is depicted, and its closest pixel to R0,
clðxÞ. The green (blue) region is where the foreground (background) dis-
tribution pcl;fðxÞ (pcl;bðxÞ) is determined.
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into orthogonal components as we shall see. The second

term of (10) is the L2 inner product of the Jacobian of the
perturbations.

The goal now is to define a gradient (or steepest) descent
approach to minimize E. It should be noted that the
gradient of an energy depends on the choice of inner prod-
uct on the space of perturbations of the warp. The typical

choice (either implicitly or explicitly) is the L2 inner prod-
uct, but this does not have desirable properties for tracking.
We therefore, compute the gradient with respect to the
Sobolev inner product defined above in (10). First, we state
the definition of the gradient, which shows the dependence
on the inner product.

Definition 2 (Gradient of Energy). Let E : M ! R, w 2 M,
h 2 TwM, and ;h iw denote the inner product on TwM. The
directional derivative of E at w in the direction h denoted,
dEðwÞ � h, is

dEðwÞ � h ¼ d

d"
Eðwþ "hÞj"¼0: (12)

The gradient of E, denotedrEðwÞ 2 TwM, is the perturbation
that satisfies the relation

dEðwÞ � h ¼ rEðwÞ; hh iw; (13)

for all h 2 TwM.

To show how the choice of inner product affects the gra-
dient, we give another interpretation of the gradient, i.e., it
is a perturbation that maximizes the following ratio:

dEðwÞ � h
khkw

; (14)

where khkw ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h; hh iw

p
is the norm induced by the inner

product. That is, the gradient is a perturbation h that maxi-
mizes the change in energy by perturbing in direction h
divided by the norm of the perturbation. Therefore, while it
is often stated that the gradient is the direction that maxi-
mizes the energy the fastest, it is actually the direction that
maximizes energy while minimizing its cost (measured by
the norm).

Since non-smooth perturbations cost a lot according to
the Sobolev norm, they are not typically Sobolev gradients.
Coarse perturbations are favored for Sobolev gradients
when they can increase the energy. Note that moving in the
negative Sobolev gradient direction reduces the energy for
any a.

The Sobolev gradient of E, denoted G ¼ rSobEðwÞ, is a
linear combination of two orthogonal (w.r.t. (10)) compo-
nents, the translation and the deformation:

GðxÞ ¼ Gþ 1

a
~GðxÞ; x 2 wðRÞ; (15)

where ~G, which is independent of a, satisfies the following
Poisson partial differential equation (PDE):

�D ~GðxÞ ¼ f1ðx;w�1ðxÞÞ det ðrw�1ðxÞÞ
� f1ð�; w�1ð�ÞÞ det ðrw�1ð�ÞÞ x 2 wðRÞ

r ~GðxÞ �N ¼ 0 x 2 @wðRÞ
~G ¼ 0

8>>><
>>>:

; (16)

where D is the Laplacian, N is the unit normal to @wðRÞ, ~G is

the average of ~G over wðRÞ, G is given by

G ¼
Z
wðRÞ

f1ðx;w�1ðxÞÞdet ðrw�1ðxÞÞdx; (17)

and f1 denotes the partial derivative of f with respect to the
first argument of f . Details of the derivations for these
expressions can be found in Appendix A, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2014.2360380.
The numerical scheme to solve (16) is given in Appendix B,
available in the online supplemental material. Note that
larger a (implying more spatial regularity) implies the gra-
dient approaches a translation (the smoothest transforma-
tion). Smaller a implies a non-rigid deformation, which is
spatially smooth and the amount of smoothness depends
on the data.

5.2 Optimizing the Energy via Gradient Descent

The gradient flow to optimize E is then given by the follow-
ing partial differential equation:

@tftðxÞ ¼ �rSobEðftÞðftðxÞÞ; x 2 R;
f0ðxÞ ¼ x; x 2 R;

�
(18)

where t indicates an artificial time parameter parameteriz-
ing the evolution of the warp ft : R ! V at a given frame in
the image sequence (not to be confused with the frame num-
ber t). The final converged ft is a local optimizer of the
energy E. It should be noted that the above equation main-
tains that ft 2 M, i.e., that the final converged result is a dif-
feomorphism. This can be seen since rwE is smooth (it is

the solution of a Poisson equation and thus, H2 [50]), and
integrating a smooth vector field results in diffeomorphism
using classical results [7], and in particular, [51] for first
order Sobolev regularity. Precise details for this fact are out
of the scope of this paper.

In implementing the gradient flow (18), we are interested
in the final converged region, and thus we keep track of
Rt ¼ ftðRÞ. For numerical ease and accuracy, we keep track
of Rt using a level set method [52], although it is not

required. We also keep track of the backward map f�1
t ,

which is needed to evaluate the gradientrSobEðftÞðftðxÞÞ.
The level set function will be denoted Ct : V ! R. Its

evolution is described by a transport PDE. The backward

map f�1
t also satisfies a transport equation. Therefore, the

optimization of E is given by the coupled PDE:

C0ðxÞ ¼ dRðxÞ; x 2 B2ðRÞ (19)

f�1
0 ðxÞ ¼ x; x 2 R0 ¼ R (20)

Gt ¼ rSobEðftÞ (21)

@tf
�1
t ¼ rf�1

t ðxÞ �GtðxÞ; x 2 Rt (22)

@tCt ¼ rCtðxÞ �GtðxÞ; x 2 B2ðRtÞ (23)

Rt ¼ fCt < 0g; (24)
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where @t denotes partial with respect to t, andB2ðRtÞ ¼ fx 2
V : jdRt ðxÞj 	 2gwhere dRt is the signed distance function of
Rt . The region Rt is updated in minus the gradient of E,

�Gt : Rt ! R2, direction via the level set evolution. NoteGt

is extended to B2ðRtÞ as in narrowband level set methods.

The backward warp f�1
t : Rt ! R is computed by flowing

the identity map along the velocity field �Gt up to time t,
and this is accomplished by the transport equation (22). The
convergence time, i.e., the time at whichE does not decrease,
is denoted by t1. At t1, w ¼ ft1 : R ! Rt1 is a local mini-

mum of E, and Rt1 ¼ wðRÞ is the region matched in image

I. Note thatw can be computed asw ¼ ðf�1
t1Þ�1.

The evolution above is automatically coarse-to-fine for
any choice of a, that is, the gradient descent favors coarse
motions/deformations initially before transitioning to finer
scale deformations. See Fig. 5 in Section 5.4 for an experi-
mental verification of this property.

5.3 Parameter Independent Optimization

One of the advantages of the form of the Sobolev-type met-
ric chosen in (10) besides the coarse-to-fine property is that
one can eliminate the need for choosing the parameter a,
while optimizing E. One can take a ! 1, in which case

G ! G, a translation motion. One can optimize by translat-

ing in the direction �G ! �G when a ! 1, until conver-

gence. At convergence, G ¼ 0, then one can evolve the warp

infinitesimally in the negative gradient �G ¼ � ~G=a direc-
tion for any finite a. Since the gradient depends only on a

by a scale factor, the choice of a is just a time re-parameteri-
zation of the evolution, not changing the geometry of the
evolution. It does not impact the final converged warp nor
the converged region. The algorithm to optimize E that is
not dependent on the choice of a is summarized in the fol-
lowing steps:

1) Perform the initializations (19)-(20).
2) Repeat the evolution (21)-(24) with a ! 1, in which

case Gt ¼ Gt , until convergence (when Gt ¼ 0).
3) Perform one time step (21)-(24) with the deformation

Gt / ~Gt. One may choose a ¼ 1, but any choice
would give the same result.

4) Repeat Steps 2-3 until convergence (when E does not
decrease).

The procedure above optimizes with respect to transla-
tions until convergence, then optimizes with respect to
deformations that are not translations (favoring coarse
deformations that optimize the energy), and the process is
iterated. This results in a scheme independent of a regular-
ity parameter a. The scheme favors a coarse-to-fine evolu-
tion, like the gradient descent with any fixed a, of the region
Rt and coarse-to-fine motion/deformation estimation.

5.4 Discussion

We relate our approach to Lucas and Kanade [53] and energy
regularizationmethods of optical flow (e.g., [48], [47]).

Since there are multiple optimizers of E, which contains
only data fidelity, regularization is needed to determine a
viable solution. Lucas and Kanade [53] restrict the possible
warps to a smaller set rather than the space of diffeomor-
phisms, i.e., translations, affine motions, or other parametric

groups. While providing a unique optimizer of E, this
restricts the possible warps w and thus also the shape of the
region. One may consider optimizing E with respect to
translations first, thus obtaining a coarse estimate of the
desired region in image I, then resort to optimizing in
finer transformations, e.g., euclidean transformations, then
affine transformations. However, one may go up to the pro-
jective group, and then it becomes unclear what group to
choose to optimize further. The algorithm that we have
presented optimizes the energy by using coarse perturba-
tions initially, it then transitions continuously and automati-
cally to finer-scale perturbations, in fact, it transitions
through all possible scales of motions/deformations, elimi-
nating the need to choose groups of motions to optimize.
This property of Sobolev-type metrics for contours was
shown analytically using a Fourier analysis in [35]. Since
this paper deals with regions, the property is harder to
show analytically since a shape-dependent Fourier basis
would need to be derived on the region. We therefore dem-
onstrate the property in an experiment.

Energy regularization methods (e.g., [48], [47]), deal with
multiple optimizers of E by changing the original energy by
adding regularization of the warp directly into the energy.
The energy in [47] for infinitesimal warps is

EBAðv; a; I; RÞ ¼
Z
R

rðjIðxÞ � aðxÞ þ raðxÞ � vðxÞjÞ dx

þ g

Z
R

rðjrvðxÞjÞdx:
(25)

An advantage of this approach over [53] is that motions/
deformations are not restricted to finitely parameterized
groups. The parameter g controls the scale of themotion: large
g implies coarsemotion, and small g implies finermotion.

One can use Black and Anandan [47] optical flow (or
other energy regularization approaches) determined from
data within a template to match a template to the next
frame. This is accomplished by deforming the region R by v
infinitesimally to obtain Rt, then recalculating v based on

the warped radiance a � f�1
t , and iterating the process. This

is the same as (19) to (24), but replacing Gt in (21) with the

minimizer of EBAðv; a � f�1
t ; I; RtÞ, the Black and Anandan

velocity determined from data within the template. We will
call this approach template B&A. Template B&A allows the
cumulative warp w to be more flexible than [53], obtaining
arbitrarily shaped regions, but g must be chosen. Large g

yields only coarse approximations of the region shape, and
small g yields finer details of shape, but is likely to be
trapped in fine details of the image before reaching the
desired region. No one scale of motions/deformations, i.e.,
no one g is sufficient. Further, template B&A does not opti-
mize a common energy for the warp w.

One ad-hoc solution to choosing g is to attempt a coarse-
to-fine scheme by starting with g large until the region con-
verges, reduce g and then deform the region until conver-
gence, reduce g, etc., which is the scheme considered in our
conference paper [10]. While the procedure solves the issue
of choosing g and is coarse-to-fine, Sobolev descent has
three advantages. First, Sobolev does not rely on an ad-hoc
scheme to reduce the parameter g. Second, Sobolev automat-
ically and continuously traverses through all scales of
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motions/deformations roughly favoring coarse-to-fine tran-
sition, whereas the ad-hoc scheme only traverses through a
discrete number of scales (chosen by the scheme to reduce
g) and the transition is not automatic. Reducing g monotoni-
cally in the ad-hoc scheme may not always be beneficial
(e.g., when new coarse structure is “discovered” from the
data during evolution and larger g is then needed). Sobolev
chooses the appropriate scale of deformation implicit in the
computation of the gradient. Computing the Sobolev gradi-
ent is fast; it has similar computational cost as computing
velocity in Horn and Schunck [48]. Sobolev is thus more
convenient for practical applications. Lastly, our scheme is
minimizes E, while the ad-hoc scheme does not necessarily
minimize an energy.

We illustrate the coarse-to-fine behavior of region-based
Sobolev by matching a template of the object (woman)
obtained from image 1 to image 2 shown in Fig. 4. The
motion contains both coarse and fine-scale deformations.
The evolution (at various snapshots) of region-based Sobolev
and template B&A is shown in Fig. 5. Final objects detected
with these schemes in a zoomed region of interest is shown
in Fig. 6. The displacement, dti;tiþ1

ðxÞ ¼ fti
� f�1

tiþ1
ðxÞ � x,

between two time instances ti and tiþ1 is shown in color
code [54] (the color indicates direction and darkness
indicates magnitude; magnitude should not be compared
across images as they are re-scaled in each image) in Fig. 5.
Region-based Sobolev moves according to coarse motions
(constant color) before resorting to finer deformations
whereas template B&A has roughly the same scale of
motions/deformation at all stages of the evolution for each
g. Small g does not capture regions of coarse deformation
and is stuck in intermediate structures. Larger g captures
regions of coarse deformation, but regions of finer motion
(e.g., the legs) are not captured. Other energy regularization
optical flow approaches, e.g., Horn and Schunck [48], simi-
larly cannot recover the desired object, as no one g is able to
recover deformation at multiple degrees of locality. Notice
that the Sobolev evolution starts with a translation, moves to
coarse deformation of both legs, and ends with fine deforma-
tions of the feet.

6 OCCLUSION/DIS-OCCLUSION COMPUTATION AND

ALTERNATING OPTIMIZATION

We now describe the alternating optimization scheme to
optimize Eo, combining the coarse-to-fine optimization
scheme described in the previous section, and optimization
in the occlusion, which we describe next. We then present
the optimization scheme to determine the dis-occlusion.

6.1 Joint Occlusion and Warp Optimization

Given an estimate w, one can solve for a global optimizer of
the energy Eo. The energy can be written as (with O � R)

EoðO jw; I; a; RÞ ¼
Z
RnO

rððIðwðxÞÞ � aðxÞÞ2Þ dxþ
Z
O

bo dx: (26)

The optimization problem can be thought of as an assignment
problem where points x 2 R are assigned to the occlusion O
or the co-visible region RnO. If x is assigned to O, then it
adds to the energy an amount bo, whereas, if it is assigned to

RnO, it adds to the energy an amount rððIðwðxÞÞ � aðxÞÞ2Þ.
Therefore to minimize the energy, we assign pixels to the
occlusion based on

O ¼ �
x 2 R : r

�ðIðwðxÞÞ � aðxÞÞ2� > bo

�
(27)

¼ w�1fx 2 wðRÞ : rððIðxÞ � aðw�1ðxÞÞ2ÞÞ > bog; (28)

which is a global optimizer of Eo conditioned on w.
The alternating scheme to optimize Eo in both O and w is

a modification of the scheme presented in Section 5.2 to
update the occlusion during the evolution. It is initialized as

C0ðxÞ ¼ dRðxÞ; x 2 B2ðRÞ (29)

f�1
0 ðxÞ ¼ x; x 2 R0 ¼ R (30)

~O0 ¼ ;: (31)

Then the following is iterated until convergence:

Gt ¼ rSobEðft jOt; Rt; IÞ (32)

@tf
�1
t ¼ rf�1

t ðxÞ �GtðxÞ; x 2 Rt (33)

@tCt ¼ rCtðxÞ �GtðxÞ; x 2 B2ðRtÞ (34)

Rt ¼ fCt < 0g (35)

~Ot ¼ fx 2 Rt : rððIðxÞ � aðf�1
t ðxÞÞ2ÞÞ > bog; (36)

where ~Ot ¼ ftðOtÞ indicates the current estimate of the

warped occlusion. Note that only ~Ot is needed to compute
the gradient Gt, and thus we do not explicitly compute Ot.

Note that Gt is specified by Gt and ~Gt , where ~Gt satisfies

the Poisson equation (16) with w�1 :¼ f�1
t , and

f1
�
x;f�1

t ðxÞ� ¼ r0ðjIðxÞ � atðxÞÞj2Þ
� ðIðxÞ � atðxÞÞrIðxÞx ~Ot

ðxÞ; x 2 Rt

(37)

atðxÞ ¼ a
�
f�1
t ðxÞ�; x 2 Rt: (38)

Discretization of (29)-(36) and numerical implementation is
given in Appendix B, available in the online supplemental
material.

Let t ¼ t1 be the time of convergence. Rt1 , a warping of
R, includes a warping of the occluded region Ot1 , and thus
the warping of the un-occluded region is wðRnOt1Þ ¼ R0

t1
¼

Fig. 4. Images I1 (left) and I2 (middle) used in the experiment in Fig. 5,
and an overlay of I1 on I2 to show the motion/deformation between
frames, which is non-rigid and contains both coarse and fine motion/
deformations.
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Rt1 n ~Ot1 . This does not include the dis-occluded region,

which is computed in the next section from R0
t1
. To ensure

spatial regularity of R0
t1
, at convergence of (29)-(36), we

induce spatial regularity into Ot1 by using the estimate

~Ot1 ¼ fx 2 Rt1 : ðGs 
 ResÞðxÞ > bog (39)

ResðxÞ ¼ rððIðxÞ � aðf�1
t1ðxÞÞÞ2Þ; (40)

where Gs denotes an isotropic Gaussian kernel.

Fig. 5. Coarse-to-fine behavior of region-based sobolev descent. Matching a template (obtained from I1) to I2 from Fig. 4 using regularization of the
velocity field in the energy, and Sobolev descent. In each row, the evolution (until convergence) is shown. [First four images]: @Rt on I2 for various
snapshots t. [Last three images]: displacement of object between adjacent snapshots (in optical flow color code). Small g favors fine deformations
and is sensitive to intermediate structures, whereas large g favors only coarse deformations and cannot capture regions with fine-scale deformations,
e.g., legs. Sobolev descent captures all scales of deformation without being sensitive to intermediate structures.
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Fig. 7 shows the evolution (29)-(36) on an example, and
the final co-visible region R0

t1
.

6.2 Dis-Occlusion Optimization

We show how to optimize the dis-occlusion energy Ed (5).
The global minimum of Ed is computed in a thresholding
step from the likelihood p. Since p decreases exponentially

with distance to R0, we assume that D � f0 < dR0 < "g. The
dis-occlusion is computed as

D ¼ fx : dR0 ðxÞ 2 ð0; "�; ðGs 
 pÞðxÞ > expðbdÞg; (41)

where s ¼ 0 corresponds to the global optimum, but to
ensure spatial regularity of D, we choose s > 0. The
choice of bd is based on the frame-rate of the camera and
the speed of the object (the more the speed and the less
the frame-rate, the smaller bd). Fig. 8 shows an example
of p, the dis-occlusion detected, and the final estimate of
the region.

Computation of dR0 in f0 < dR0 < "g is done efficiently
with the Fast Marching Method [55], and clðxÞ at each point
is simultaneously propagated as the front in the Fast March-
ing Method evolves. Then p is readily computed.

7 FILTERING RADIANCE ACROSS FRAMES

We integrate the results of occlusion/deformation esti-
mation and dis-occlusion estimation into a final estimate
of the shape and radiance in each frame. To deal with
modeling noise (specified in (2)), we filter the radiance
in time.

Given the image sequence It; t ¼ 1 . . . ; N and an initial

template R0 � V; a0 : R0 ! Rk, the final algorithm is as fol-
lows. For t ¼ 1; . . . ; N , the following steps are repeated:

1) Compute the warping of Rt�1 and Ot�1: wt�1ðRt�1Þ
and wt�1ðOt�1Þ, resp., and a0t ¼ at�1 � w�1

t�1 defined on
wt�1ðRt�1Þ using the optimization scheme described
in Section 6.1 with input Rt�1; at�1 and It.

2) Given R0
t ¼ wt�1ðRt�1Þnwt�1ðOt�1Þ, the warping of

the un-occluded part of Rt�1, and the image It, com-
pute the dis-occlusion Dt using (41). The estimate of
Rt is then R0

t [Dt.
3) The radiance is then updated as

atðxÞ ¼ ð1�KaÞa0tðxÞ þKaItðxÞ; x 2 R0
t;

ItðxÞ; x 2 Dt;

�
(42)

whereKa 2 ½0; 1� is the gain, a constant.
The averaging of the warped radiance and the current
image (42) combats modeling noise h in (2). In practice, Ka

is chosen large if the image is reliable (e.g., no specularities,
illumination change, noise, or any other deviations from
brightness constancy), and small otherwise.

8 EXPERIMENTS AND COMPARISONS

We demonstrate our method on a variety of videos
that contain self-occlusions/dis-occlusions. All examples

Fig. 7. Occlusion estimation and warping. [Top to bottom]: Beginning
(t ¼ 0), intermediate, and final stages of evolution. [first column]: radi-
ance at , [second]: target image I and boundary of Rt , [third]: velocity
�Gt , [fourth]: occlusion estimation Res at time t, [fifth]: optical flow color
code. The final occluded region is shown in Fig. 2b.

Fig. 8. Illustration of disocclusion detection.[first]: warped un-occluded
radiance defined on R0 (after occlusion and deformation computation),
[second]: target image I, [third]: likelihood of dis-occlusion map p
(defined in BR’ð"ÞÞ, [fourth]: computed dis-occlusion D (white), and [fifth]:
final radiance. Boundary of final region super-imposed on I is in Fig. 2d.

Fig. 6. Zoom of converged results of experiment of Fig. 5. Boundary of
converged region on I2. [Top-left]: energy regularization g ¼ 2:5� 105,
[Top-right]: energy regularization g ¼ 50� 105, [Bottom-left]: energy
regularization g ¼ 1;000� 105, [Bottom-right]: region-based Sobolev.
Notice that small g misses regions of coarse motion, larger g obtains
regions of coarse motion, but misses regions where finer deformation
occurs. Sobolev obtains both coarse and fine deformations.
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shown have over 100 frames.1 To demonstrate that occlu-
sion/dis-occlusion modeling aids joint shape/appearance
tracking, we compare to Adobe After Effects CS6 2012
(AAE) (based on [20], but significantly extended), which
employs localized joint shape and appearance informa-
tion without explicit occlusion modeling. Note that AAE
has an interactive component to correct errors in the
automated component; we compare to the automated
component to show less interaction would be required
with our approach. To show advantages over tracking
by partitioning elementary image statistics, we compare
to Scribbles [4] (publicly available code and results
optimized for parameters), which is a recent technique

that employs global statistics in addition to other advan-
ced techniques.

Parameters are chosen as: s ¼ 5 in (41) and (39), sd ¼ 100
in the likelihood, p in (6), the band thickness for the domain
of p is " ¼ 30, and the radius of Br in pf;x and pb;x is r ¼ 3"
(i.e., a 6"� 6" window). The threshold for the occlusion
stage is bo ¼ Resmin þ 0:3� ðResmax � ResminÞ where Resmax

(Resmin) denotes the maximum (minimum) value of
smoothed residual. The threshold for the dis-occlusion stage
is expbd ¼ 0:5 when p is normalized to be a probability. The
gain in the radiance update (42) is Ka ¼ 0:8. Parameters are
fixed for the whole video. Parameter sensitivity analysis is
shown at the end of the Section.

Initialization. Precise initialization in frame 1 is not
needed, as initialization inside the object can be corrected
by running dis-occlusion detection. Outside initialization
will be self-corrected in joint warp/occlusion estimation as
the background moves differently than the object, and
would be detected as occlusion and removed. This is true
when the background area in the initialization is less than
the object area.

The first experiment (Fig. 9) shows that occlusion and
dis-occlusion modeling is vital. As the man in the sequence
walks forward, his legs, arms and back are self-occluded/
dis-occluded. Ignoring occlusions (setting ~Ot ¼ ; in Section
6.1) and dis-occlusion detection, the shape is inaccurate
(first row). Using occlusion modeling but not dis-occlusions
(second row), it is possible to discard the portion of the
background between the legs, and the occluded right hand
in the first frame is removed. Using the dis-occlusion
modeling but not occlusions (third row), dis-occluded parts
of the body are detected. However, irrelevant regions of the
background (that can be removed in the occlusion stage) are

Fig. 9. Modeling occlusions/dis-occlusions is necessary. [first row]:
occlusion/dis-occlusion detection are turned off in our method. [second]:
occlusion modeling done, but not dis-occlusions in our method. [third]:
dis-occlusions detected but not occlusions. [fourth]: result of Scribbles.
[fifth]: result of AAE. [sixth]: accurate tracking when both occlusion and
dis-occlusion modeling is performed (our final result).

Fig. 10. Distinctive foreground/background global statistics. [Top]: Scrib-
bles, [Middle]: AAE, [Bottom]: proposed method. When fore/background
global statistics are separable, Scribbles, and AAE, for minor occlusions,
performs well.

1. Videos for all experiments are available on the following website:
http://vision.ucla.edu/ ganeshs/articulated_object_tracking_html/
pami_supp.html
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captured. Best results (last row) are achieved when both the
occlusion and dis-occlusions are modeled. The fourth row
shows the result of Scribbles. It has trouble discriminating
between face and the background, which have similar radi-
ance. The fifth row shows the result of AAE, which captures
irrelevant background.

Fig. 10 shows tracking of a fish and a skater. When fore-
ground/ background global histograms are easily separa-
ble, Scribbles performs well, and when occlusions are minor
AAE, performs well as does the proposed method.

In Fig. 11, we have tested our algorithm on challenging
video (more than 100 frames per sequence) exhibiting self-
occlusions and dis-occlusion (crossing legs, viewpoint
change, rotations in depth), complex object radiance and
background in which it becomes difficult to discriminate
between foreground and background global statistics (e.g.,
the woman’s pants have same radiance as car tires). Devia-
tions from brightness constancy are clearly visible (small
illumination change, specular reflections, and even shad-
ows). The latter are handled with our dynamic radiance
update. In these sequences, Scribbles and Adobe After
Effects 2012 have trouble discriminating between object and
background which share portions of similar intensity, and
occlusions (e.g., crossing of legs). In the “Lady Mercedes,”
sequence (top left), after a few frames, Scribbles can only

track the head of the lady. This is because the lady’s clothing
shares similar intensity as the tires of the car and some of
the background. Thus, the tracker confuses the clothing
with the background and only tracks the head, which has
different statistics from the rest of the images. Our method
is able to capture the shape of the objects quite well (quanti-
tative assessment is in Table 1). The man at the station (top
right group) at the fourth column shows a limitation of our
dis-occlusion detection: dis-occluded parts of the object that

Fig. 11. Occlusions/dis-occlusions, violations of brightness constancy, and foreground/background not easily separable. [Top]: Scribbles, [Middle]:
Adobe After Effects 2012, [Bottom]: proposed method. Methods based on foreground/background image statistic discrimination leak into the back-
ground. Note 4 (out of about 100-200 for most sequences) frames are selected for display in each sequence.

TABLE 1
Quantitative Performance Analysis

Sequence Scribbles [4] Adobe Effects 2012 [20] Ours

Library 0.8926 0.9193 0.9654
Fish 0.9239 0.9513 0.9792
Skater 0.8884 0.6993 0.9086
Lady 0.2986 0.8243 0.9508
Station 0.5367 0.8258 0.9216
Hobbit 0.7312 0.5884 0.9335
Marple 0.6942 0.8013 0.9186
Lady 2 0.7457 0.7909 0.9584
Psy 0.6163 0.8845 0.9329

Average F-measure (over all frames) computed from ground truth are shown.
larger F-measure means better performance.
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do not share similar radiance as the current template (sole of
shoe) are not detected. A variety of other videos are proc-
essed, and our method performs well.

In Fig. 12, we show sensitivity analysis of the key param-
eters. We analyze bo and bd in the occlusion and disocclu-
sion detection stages using a precision / recall (PR) curve.
For four image sequences, we choose a pair of images so
that significant occlusion and disocclusion are present
between the frames (about five frames apart on a 30 fps
video), and significant deformation and motion is present.
Given a hand cutout in the first frame, we run our algorithm
to obtain the cutout in the next frame. The first image in
Fig. 12 shows the PR curve as the parameter bo is varied
between its valid range (the minimum value of the residual,
Res, and its maximum value), and the threshold of the dis-
occlusion stage bd is kept fixed. The second image in Fig. 12
shows the PR curve as the parameter bd in the disocclusion
stage is varied between its valid range (the minimum and
maximum value of p), and the threshold in the occlusion
stage bo is kept fixed. High precision and recall is main-
tained for a wide range of bo;bd.

We state the running time of our algorithm on a standard
Intel 2.8 GHz dual core processor. The speed depends on a
variety of factors such as object size and amount of defor-
mation between frames. On HD 720 video, it is on average
5 seconds per frame for sequences in Fig. 11 (in C++),
while AAE takes 1 second. Speed-ups are possible, e.g., the
deformation computation can be sped up using a multi-
scale procedure.

9 CONCLUSION

The proposed technique for shape tracking is based on jointly
matching shape and complex radiance of the object across
frames. Self-occlusions and dis-occlusions, which pose a chal-
lenge to this approach, weremodeled in thiswork.

To compute self-occlusions and the warp of a template to
the next frame, a joint energy was formulated, and a novel
optimization scheme was derived. The scheme has an
automatic coarse-to-fine property, which is beneficial in
tracking. The method was based on constructing a novel
infinite dimensional Riemannian manifold of parameterized
regions and a novel Sobolev-type metric. The optimization
is a gradient descent with respect to a Sobolev metric. The
coarse-to-fine property was demonstrated empirically.

Experiments demonstrated the criticality of modeling
occlusions and dis-occlusions. Comparison to methods of

partitioning image statistics and shape/appearance match-
ing without occlusion modeling demonstrated the effective-
ness of the proposed algorithm. Future work includes full
occlusions of the object by other objects, and addressing
limitations of the self-similarity assumption in dis-occlusion
detection.
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APPENDIX A
COMPUTING REGION-BASED SOBOLEV GRADIENTS

We now show how to compute the gradient of an energy
with respect to the Sobolev inner product defined in (10). For
generality, we compute the gradient of

E(w) =

∫

R

f(w(x), x) dx (43)

where f : R2 × R2 → R. The directional derivative in the
direction h : R→ R2 is

dE(w) · h =

∫

R

f1(w(x), x) · h(x) dx =
∫

w(R)

f1(x,w−1(x)) · h ◦ w−1(x) det (∇w−1(x)) dx (44)

and since by definition dE(w)·h = 〈G, h〉w for all h ∈ TwM ,
where G = ∇wE is the gradient with respect to the Sobolev
inner product, we have that
∫

w(R)

f1(x,w−1(x)) · ĥ(x) det (∇w−1(x)) dx =

G · ĥ+ α

∫

w(R)

tr
{
∇G(x)T∇ĥ(x)

}
dx (45)

By integrating by parts, one finds that
∫

w(R)

f1(x,w−1(x)) · ĥ(x) det (∇w−1(x)) dx =

α

∫

∂w(R)

(∇G(x) ·N) · ĥ(x) dx−
∫

w(R)

(
1

|w(R)|G− α∆G(x)

)
· ĥ(x) dx. (46)

Therefore, G can be obtained by solving




G
|w(R)| − α∆G(x) = F̃ (x) x ∈ w(R)

F̃ (x) := f1(x,w−1(x)) det∇w−1(x) x ∈ w(R)

∇G(x) ·N = 0 x ∈ ∂w(R)

. (47)

Integrating both sides of the first equation above over R, we
find that

G =

∫

R

f1(x,w−1(x)) det (∇w−1(x)) dx. (48)

Therefore, the solution for G is expressed as

G = G+
1

α
G̃ (49)

where G̃ (independent of α) satisfies




−∆G̃(x) = F (x) x ∈ R
∇G̃(x) ·N = 0 x ∈ ∂w(R)

G̃ = 0

, (50)

and

F (x) = f1(x,w−1(x)) det (∇w−1(x))−
f1(·, w−1(·)) det (∇w−1(x)). (51)

We consider f of the form

f(y, z) =
1

2
ρ(|I(y)− a(z)|2)χ̄O(z) (52)

where ρ : R→ R+. This gives

f1(y, z) = ρ′(|I(y)−a(z)|2)(I(y)−a(z))∇I(y)χ̄O(z). (53)

APPENDIX B
NUMERICAL DISCRETIZATION

A. Sobolev Gradient Discretization

We show how to discretize (50), the Poisson equation. The
discretization of the Laplacian is

−∆G̃(x) = −
∑

y∼x
G̃(y)− G̃(x) = F (x), (54)

where F is defined in (51), and y ∼ x indicates that y is a
4-neighbor of x. Discretizing the boundary condition ∇G̃(x) ·
N = G̃(y)− G̃(x) = 0, when y ∼ x, y /∈ R, and substituting
it above, we have that

−
∑

y∼x,y∈R
G̃(y)− G̃(x) = F (x). (55)

This can be solved using the conjugate gradient method.
Indeed, the operator on the left is positive definite on the set
of mean zero vector fields. One starts with an initialization
such that G̃ = 0.

B. Discretization of Transport Equations

We describe the discretizations of the transport equations
used in the gradient descent of the warp φ−1

τ and the warped
region Rτ , which for the most part, are standard.

Let Ψτ : Ω → R denote the level set function at time τ
such that {x ∈ Ω : Ψτ (x) < 0} = Rτ . The level set evolution
equation (34) (shown here again for convenience):

∂τΨτ (x) = ∇Gτ (x) · ∇Ψτ (x) (56)

is discretized using an up-winding difference scheme:

Ψτi+1
(x) = Ψτi(x)+

∆t
(
G1
τi(x)Dx1 [Ψτi , G

1
τi , x] +G2

τi(x)Dx2 [Ψτi , G
2
τi , x]

)

(57)

where ∆t > 0 is the time step,

Dxj [Ψτi , G
j
τi , x] =

{
D+
xjΨτi(x) if Gjτi(x) < 0

D−xjΨτi(x) if Gjτi(x) ≥ 0
(58)

where D+
xj (D−xj ) denotes the forward (backward, resp.)

difference with respect to the jth coordinate, and Gτ (x) =
(G1

τ (x), G2
τ (x)). Note that Gτ |∂Rτ is extended to the nar-

rowband of the level set function by choosing Gτ at a point x
in the narrowband to be the same as that of the closest point
on ∂Rτ from x.

The discretization of the transport equation (33) for the
backward map:

∂τφ
−1
τ (x) = ∇Gτ (x) · ∇φ−1

τ (x) (59)



2

is

φ−1
τi+1

(x) =




φ−1
τi (x) + ∆t

(
G1
τi(x)Dx1 [φ−1

τi , G
1
τi , x]

+G2
τi(x)Dx2 [φ−1

τi , G
2
τi , x]

)
, x ∈ Rτi+1 ∩Rτi∑

y∈Nx∩Rτi
dΨτi

(x,y)φ−1
τi

(y)
∑
y∈Nx∩Rτi

dΨτi
(x,y) , x ∈ Rτi+1

\Rτi
(60)

where Nx denotes the eight neighbors of x, and dΨτi
(x, y)

denotes the distance between x and the zero crossing of
the level set Ψτi between x and y (zero if there is no
zero crossing). In the computation of the forward/backward
difference, if the relevant neighbor of x is not in Rτi , then the
difference is set to zero. It should be noted that the step size
is chosen to satisfy the stability criteria, which means that the
level set may not move more than one pixel and thus x will
always have a neighbor that is in Rτi , and so the second case
in (60) is well-defined. The step size ∆t is chosen to satisfy
∆t < 0.5/maxx∈Rτi ,j=1,2 |Gjτi(x)|.


