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SurfCut: Surfaces of Minimal Paths
from Topological Structures

Marei Algarni and Ganesh Sundaramoorthi

Abstract—We present SurfCut, an algorithm for extracting a smooth, simple surface with an unknown 3D curve boundary from a noisy
3D image and a seed point. Our method is built on the novel observation that ridge curves of the Euclidean length of minimal paths
ending on a level set of the solution of the eikonal equation lie on the surface. Our method extracts these ridges and cuts them to form
the surface boundary. Our surface extraction algorithm is built on the novel observation that the surface lies in a valley of the eikonal
equation solution. The resulting surface is a collection of minimal paths. Using the framework of cubical complexes and Morse theory,
we design algorithms to extract ridges and valleys robustly. Experiments on three 3D datasets show the robustness of our method,

and that it achieves higher accuracy with lower computational cost than state-of-the-art.

Index Terms—Segmentation, surface extraction, minimal paths, computational topology, cubical complex, Morse-Smale complex

1 INTRODUCTION

MINIMAL path methods [1], built on the Fast Marching
algorithm [2], [3] that solves the eikonal equation,
have been widely used in computer vision. They provide a
framework for extracting continuous curves from possibly
noisy images. For instance, they have been used in edge
detection [4] and object boundary detection [5], mainly in
interactive settings as they typically require user defined
seed points. Because of their ability to provide continuous
curves, robust to clutter and noise in the image, generaliza-
tions of these techniques to extract the equivalent of edges
(intensity discontinuities) in 3D images, that form surfaces,
have been attempted [6], [7]. These methods apply to
extracting a surface whose boundary forms a curve, possi-
bly in 3D. We call the boundary a free-boundary. Extraction
of surfaces with free-boundary is useful because many
edges form these surfaces, and edges are fundamental struc-
tures that are prevalent in images. Some applications
include medical datasets (e.g., lung fissures, walls of heart
ventricles) [8] and scientific imaging datasets (e.g., fault
surfaces in seismic images, an important problem in the oil
industry) [9]. In [8] an alternative method to extract such
surfaces, based on the theory of minimal surfaces [10], is
provided. However, existing approaches to surface extrac-
tion for surfaces with free-boundary require the user to pro-
vide the boundary of the surface or other laborious input.

In this paper, we use the Fast Marching (FM) algorithm
and techniques from computational topology to create an
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algorithm for extracting the boundary of a surface from a 3D
image using a single seed point, and an algorithm to extract
the surface from the boundary. We use Fast Marching to
“smooth” a local (possibly noisy) likelihood map of the sur-
face in a way that is guaranteed to preserve locations of local
extrema of the likelihood under the smoothing. We then
extract closed curves, from the propagating front generated
by FM from the seed point, containing these local extrema.
This is done by extracting generalized local maxima, which
we call ridges, of the Euclidean minimal path length function
computed from FM. The resulting ridge curves are shown to
lie on the surface of interest. This is true since the front trav-
els fastest along the surface, generating paths with extremal
length on the surface. Ridges are extracted efficiently using
computational topology, guaranteeing that they are closed
curves. The boundary of the surface is shown to be points on
the curves with a minimum distance between such curves,
and is computed with a simple graph cut. The surface is a
collection of minimal paths containing the boundary and is
shown to be an extrema of the distance computed by FM,
which is extracted using computational topology to guaran-
tee a simple topology. See Fig. 1. Our method is applicable to
any imaging modality. It extracts any simple surface with
a boundary from an image of noisy local measurements
(e.g., an edge map) of the surface.

Our contributions are: 1. We introduce the first algo-
rithm, to the best of our knowledge, to extract a closed 3D
space curve forming the boundary of a surface from a single
seed point. It is based on extracting curves from a topologi-
cal construct, called the Morse-Complex, from a distance
produced by Fast Marching. 2. We introduce a new algo-
rithm, based on extracting extrema of the FM distance
to extract a surface given its boundary and a noisy image.
It produces a topologically simple surface whose boundary
is the given space curve. The surface is shown to be formed
from minimal paths. Both boundary and surface extraction
have O(N log N) complexity, where N is the number of
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Fig. 1. Overview of SurfCut. [Top, left]: From a seed point on the surface,
a front is propagated, [Top, right]: Generalized local extrema, i.e., ridges,
of a function of FM distance are extracted, [Bottom, left]: Locations with
minimum Euclidean distance between curves are extracted forming the
boundary, [Bottom, right]: The surface is extracted as generalized local
minima, i.e., valley, of the FM distance.

pixels. 3. We test our method on challenging datasets, and
we quantitatively out-perform comparable state-of-the-art
in free-boundary surface extraction.

1.1 Related Work
1.1.1 Surface Extraction

Active surface methods [11], [12], [13], based on level set
methods [14], their convex counterparts [15], graph cut
methods [16], [17], and other image segmentation methods
partition the image into volumes and the surfaces enclose
these volumes. These methods have been used widely in seg-
mentation. However, they are not applicable to our problem
since we seek a surface, whose boundary is a 3D curve, that
does not enclose a volume nor partition the image.

Our method uses the Fast Marching (FM) method [2]. This
method propagates an initial surface (e.g., a seed point) in an
image in the direction of the outward normal with speed pro-
portional to a function defined at each pixel of the image. The
end result is a distance function, which gives the shortest
path length (measured as a path integral of the inverse
speed) from any pixel to the initial surface. The method is
known to have better accuracy than discrete algorithms
based on Dijkstra’s algorithm. Shortest paths from any pixel
to the initial surface can be obtained from the distance func-
tion [1] (see also [18]). This has been used in 2D images to
compute edges in images. A limitation of this approach is
that it requires the user to input two points—the initial and
ending point of the edge. In [4], the ending point is automati-
cally detected. These methods are not directly applicable to
extracting a surface forming an edge in 3D.

Attempts have been made to use minimal paths to obtain
edges that form a surface. In [7], [19], minimal paths are
used to extract a surface edge with a cylindrical topology, a
topology different from our problem. The user inputs the
two boundary curves (in parallel planes) of the cylinder and
minimal paths joining the two curves are computed conve-
niently using the solution of a regularized transport partial
differential equation. Surface extraction with less intensive

user input was attempted in [6]. There, a patch of a sheet-
like surface is computed with a user provided seed point
and a bounding box, with the assumption that the patch sli-
ces the box into two pieces. The algorithm extracts a curve
that is the intersection of the surface patch with the bound-
ing box using the distance function to the seed point
obtained with Fast Marching. Once this boundary curve is
obtained, the patch is computed using [19]. The obvious
drawbacks of this method are that only a patch of the
desired surface is obtained, and a bounding box, which
may be cumbersome to obtain, must be given by the user.

Another approach to obtaining a surface along image
edges from its boundary is minimal surfaces [8], [20]. The
minimal weighted area simple surface interpolating the
boundary is obtained by solving a linear program. Faster
implementations for minimal surfaces are explored in [8],
using algorithms for the minimum cost network flow prob-
lem (e.g., [21], [22], [23], [24]). This significantly speeds up
the approach, although it requires an initial surface, and the
algorithm is dependent on it. The main drawback of mini-
mal surfaces is that the user must input the boundary of the
surface, which our method addresses. It is also computa-
tionally expensive as we show in experiments.

An approach for surface extraction, which does not
require user input, is [25]. There, a matrix based on the local
smoothed Hessian matrix of the likelihood is used to gener-
ate a ridge in the image near the desired surface. Then sur-
face normals based on the matrix are computed, which are
used to generate several surfaces. The method is convenient
since it is fully automated. This approach has been tailored
to seismic images for extracting fault surfaces [9], and it is
the state-of-the-art. Our method also smooths the likeli-
hood, but in a way that preserves locations of critical struc-
tures, resulting in a more accurate surface. Also, our
extraction of extrema, by using tools from computational
topology, guarantees a simple surface topology.

1.1.2 Computational Topology

Our method is a discrete algorithm and is based on the
framework of cubical complexes [26], [27]. This framework
allows for performing operations analogous to topological
operations in the continuum. It has been used for thinning
surfaces in 3D based on their geometry [28] to obtain skele-
tons (or medial representations [29], [30], [31]) of geometri-
cal shapes. This theory guarantees that the resulting
algorithms produce structures that match the true topology
of the desired structures (e.g., curve, surface or volume).
Our novel algorithms use concepts from cubical complex
theory. In contrast to [28], our method is designed to
robustly extract topological structures of a function or data
defined on a surface (defined by Fast Marching), rather than
geometrical properties of a surface. Specifically, we extract
generalized local maxima of a function derived from FM to
generate curves, which are used to generate the surface
boundary. We extract generalized local minima of the FM
distance to extract the surface from boundary. These gener-
alizations will be made precise in Sections 3 and 4.

Our method uses a topological construction called the
Morse complex [32] from Morse theory to extract such gener-
alized extrema on a manifold. There is a large literature that
aims to compute the Morse complex and an extension called
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the Morse-Smale Complex, from discrete data [33], [34],
[35], [36]. Roughly, Morse complexes describe the behavior
of the gradient flow of a function within regions. We use
cubical complexes to construct the Morse complex since
they are naturally suited for image data, defined on grids.
Conceptually, our algorithm for the Morse complex appears
similar to [35], even though the technical details and notions
of discrete topology are different. Our contribution is not to
provide another algorithm for the Morse complex, but to
use the Morse complex for surface extraction from images.

1.1.3 Extensions to Conference Paper

A preliminary version of this manuscript has appeared in
[37]. In this version, the theoretical foundations are pro-
vided: 1) we provide analytical arguments to show that our
algorithms extract the desired surface by relating it to con-
structions in Morse theory, and 2) we show that the surface
computed from our algorithm is formed by collections of
minimal paths, thus inheriting known regularity properties
from such paths. We also extended our ridge extraction
algorithm to better deal with extraneous structures. See [38]
for more technical and details beyond this paper.

2 TOPOLOGICAL PRELIMINARIES

In this section, we present theory and notions from topology
and computational topology that will be relevant in subse-
quent sections in designing and justifying our novel algo-
rithms for surface extraction.

2.1 Topological Structures

Our algorithms extract topological structures from func-
tions defined on the image domain and manifolds embed-
ded in the image. We give formal definitions for these
topological structures, ridges and valleys, and then the Morse
complex.

2.1.1 Critical Structures

Intuitively, ridge points of a function defined on a manifold
correspond to local maxima when restricted to sub-spaces
of directions rather than the whole space of possible direc-
tions. Similarly, valley points correspond to local minima of
a function when restricted to sub-spaces of directions. We
now give more formal definitions. We consider functions
h:M CR" — R, defined on a n — 1 dimensional manifold.
For a point x € M, we denote T, M to be the tangent space
of M at x, which consists of all valid directions at the point
x on M. We first define the critical points of h as the points p
on M where the gradient vanishes, i.e., Vi(p) = 0. Note that
the gradient refers to the intrinsic gradient Vh(z) € T, M,
ie., it is defined by the relation dh(z) - v = Vh(z) - v for all
v € T,,M where dh(z) - v is a notation that denotes the direc-
tional derivative of h at « and the right hand side is the
usual Euclidean dot product. Ridges and valleys are for-
mally defined by [39] as follows.

Definition 1 (Ridge and Valley). Let h: M C R" — R
where M is an n — 1 dimensional manifold. Let \; < --- <
A1 and ey, ... en_1 € T, M, be eigenvalues and eigenvectors
of the Hessian Hh(x)atx € M. Letk < n — 1.

NO.3, MARCH 2019

e A point x € M is a n—1—k dimensional ridge
point of h if A\, <0 and Vh(z)-e, =0 for
m=1,...,k

o A point €M is an—1—k dimensional valley
point of h if A\,—p > 0 and Vh(z)-e, =0 for
m=n—Fk,...,n—1.

The conditions above ensure zero derivatives in a sub-
space of directions, and the conditions on the Hessian
ensure the function is concave (for ridges) and convex (for
valleys) in the appropriate subspace, and has greatest cur-
vature in this subspace. The surface in our algorithm is a
valley of the Fast Marching distance, and the boundary of
the surface will be obtained by computing ridges of the
Euclidean minimal path distance function to the seed point,
as we will show. We will extract these structures via the
Morse complex, defined in the next section. The formal defi-
nitions are provided to understand why the Morse complex
is computed. The curvature property in the definitions will
not be needed for our algorithms, and our proofs will not
show this property. Technically, these structures should be
called generalized maxima and minima rather than ridges
and valleys, but we use this terminology for brevity.

2.1.2 Morse Complex

Our algorithms for extracting the previous structures do not
use the differential conditions above, as they are not robust
to noise. We will design our algorithms based on construc-
tions in Morse theory [40]. We introduce the Morse complex,
and in a later section we show how the Morse complex can
be used to obtain ridges and valleys. We define the ascending
and descending manifolds of a critical point as all points on a
path along the negative (positive, respectively) gradient
direction that leads to the given critical point. A path on a
manifold M is a mapping y : [0,00) — M. A gradient path
is specified by the differential equation y/(t) = £Vh(y(t)),
where h is some function defined on M. Formally, the
ascending and descending manifolds of a critical point p of
h are defined as follows [32].

Definition 2 (Ascending and Descending Manifolds).
Let h : M — R be a function and p be a critical point of h. The
ascending manifold at p is

A(p) = {x € M : there exists y : [0,00) — M such that

, oY)
y(0) =z, y(00) = p, ¥ (t) = =Vh(y(t))}.
The descending manifold at p is
D(p) ={x € M : there exists y : [0,00) — M such that ®

¥(0) = @, y(00) = p,¥'(t) = Vh(y(t))}-

For instance, consider the function 4 : R* — R defined by
h(z,y) = 2° + 4?. Its ascending manifold at the critical point
0is A(0) = R? as all negative gradient paths lead to the ori-
gin. Note also that D(0) = 0. See Fig. 2 for a visualization in
the one-dimensional case. A reader familiar with the Water-
shed tranform would notice that the ascending manifolds
are catchment basins.

The ascending manifolds of local minima decompose the
manifold M into disjoint open sets. Similarly, the descend-
ing manifolds of all local maxima decomposes the manifold
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Fig. 2. lllustration of some ascending and descending manifolds of a
one-dimensional function.

M into disjoint open sets. The latter decomposition forms
the Morse complex of h, and the former is the Morse complex
of —h.

2.2 Cubical Complexes Theory

We now introduce notions from cubical complex theory,
which is the basis for our algorithms in future sections. This
theory defines topological notions (and computational
methods) for discrete data that are analogous to topological
notions in the continuum. The notion of free pairs, i.e., those
parts of the data that can be removed without changing
topology of the data, is pertinent to our algorithms. Since
the algorithms we define require the extraction of lower
dimensional structures (ridge curves from surfaces, and val-
ley surfaces from volumes), it is important that the algo-
rithms are guaranteed to produce lower dimensional
structures with correct topology. The theory of cubical com-
plexes (e.g., [27], [28]) guarantees such lower dimensional
structures are generated with homotopy equivalence to the
original data.

Our data (either a curve, surface or volume) will be rep-
resented discretely by a cubical complex. A cubical complex
consists of basic elements, called faces, of d-dimensions, e.g.,
points (0-faces), edges (1-faces), squares (2-faces) and cubes
(3-faces). Formally, a d-face is the cartesian product of d
intervals of the form (a,a + 1) where a is an integer. We can
now define a cubical complex (see Fig. 3) as follows.

Definition 3. A d-dimensional cubical complex is a finite set of
faces of d-dimensions and lower such that every sub-face of a
face in the set is contained in the set.

Our algorithms consist of simplifying cubical complexes
by an operation that is analogous to the continuous topolog-
ical operation called a deformation retraction, i.e., the opera-
tion of continuously shrinking a topological space to a
subset. For example, a punctured disk can be continuously
shrunk to its boundary circle. Therefore, the boundary circle
is a deformation retraction of the punctured disk, and the
two are said to be homotopy equivalent. We are interested in
an analogous discrete operation, whereby faces of the cubi-
cal complex can be removed while preserving homotopy
equivalence. Free faces (see Fig. 3), defined in cubical com-
plex theory, can be removed simplifying the cubical com-
plex, while preserving a discrete notion of homotopy
equivalence. These are defined formally as:

Definition 4. Let X be a cubical complex, and let f,g C X.
g is a proper face of f if g # f and g is a sub-face of f.

free 1D faces free 2D faces

[

cubical complex not cubical complex

¢,

Fig. 3. [Left two images]: lllustration of faces that form a cubical complex
(left) and faces that do not form a cubical complex (0,1,2-faces are
marked in red, green and orange). The missing 1-face and O-faces cir-
cled in blue on the right are not in the complex, but they are sub-faces of
other faces in the set. [Right two images]: Example of 1-face, 0-face free
pairs, and 2-face, 1-face free pairs (circled in blue).

g is free for X, and the pair (g, f) is a free pair for X if f is
the only face of X such that g is a proper face of f. If g is not
free, it is called isthmus.

The definition provides a constant-time operation to check
whether a face is free. For example, if a cubical complex X is
a subset of the 3-dim complex formed from a 3D image grid,
a 2-face is known to be free by only checking whether only
one 3-face containing the 2-face is contained in X.

In the next section, we construct cubical complexes for
the evolving front produced by the Fast Marching algo-
rithm, and retract this front by removing free faces to obtain
a lower dimensional ridge curve that lies on the surface that
we wish to obtain. We also retract a volume to obtain a val-
ley, which forms the surface of interest.

3 SURFACE BOUNDARY EXTRACTION

In this section, we present our algorithm for extracting the
boundary curve of a free-boundary surface from a possibly
noisy local likelihood map of the surface defined in a 3D
image. The algorithm consists of retracting the fronts
(closed surfaces) generated by the Fast Marching algorithm
to obtain ridge curves on the surface of interest. We there-
fore review Fast Marching in the first sub-section before
defining our novel algorithms for surface extraction.
3.1 Fronts Localized to the Surface with Fast
Marching
We use the Fast Marching Method [2] to generate a collec-
tion of fronts that grow from a seed point and are localized
to the surface of interest. We denote by ¢ : () C R?® >R, a
possibly noisy function defined on each pixel of the given
image grid. It has the property that (in the noiseless situa-
tion) a small value of ¢(x) indicates a high likelihood of the
pixel  belonging to the surface of interest.

Fast Marching solves, with complexity O(N log N) where
N is the number of pixels, a discrete approximation to
U:Q C R* — RT, the solution of the eikonal equation:

{[v0@l=é(o) =<} .
U(p) =0,

where V denotes the spatial gradient (partials in all coordi-
nate directions), and p € () denotes an initial seed point. For
our situation, p will be required to lie somewhere on the sur-
face of interest. The function U at a pixel = is the weighted
minimum path length along any path from z to p, with
weight defined by ¢. U is called the weighted distance. Min-
imal paths can be recovered from U by following the gradi-
ent descent of U from any z to p. A front (a closed surface,
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from Fast Marching

Fig. 4. [Top left]: The evolving Fast Marching (FM) front at two different
time instances in orange and white. The function 1/¢ is the likelihood of
surface, and is visualized (red - high values, and blue - low values). Ridge
points of Ug, the Euclidean length of minimal paths, lie on the surface of
interest. [Top right]: This is more easily seen in 2D where the local maxima
of the Euclidean path length (red balls) of minimal paths (dashed) are
seen to lie on the curve of interest. The green contour is a snapshot of the
front. [Bottom]: Schematic in 3D with front (blue), surface (green), and
minimal paths (orange). Orthogonal to the surface where the surface
intersects the front, the Euclidean path length decreases. Along the sur-
face, the path lengths may increase or decrease.

which we hereafter refer to as a front to avoid confusion
with the free-boundary surface) evolving from the seed
point at each time instant is equidistant (in terms of U) to
the seed point and is iteratively approximated by Fast
Marching. As noted by [1], a positive constant added to the
right hand side of (3) may be used to induce smoothness of
paths. The front, evolving in time, moves in the outward
normal direction with a speed proportional to 1/¢(z).
Fronts can be alternatively obtained by thresholding U at
the end of Fast Marching. The solution of (3) is continuous,
and can be approximated as smooth since the solution is a
viscosity solution [41], and so a limit of smooth functions.

Following, we will make use of distance functions where
¢ is non-uniform as well as uniform. Minimal paths will
refer to minimal paths from the former.

3.2 Contours on the Surface from Front Ridges

We give the intuition behind the algorithm, then this will
be made precise in the propositions. If we choose the seed
point p to be on the free-boundary surface of interest, the
front generated by Fast Marching will travel the fastest
when ¢ is small (i.e., along the surface) and travel slower
away from the surface, and thus the front is elongated
along the surface at each time instant (see Fig. 4). Our
algorithm is based on the following observation: points
along the front at a time instant that have traveled the fur-
thest (with respect to Euclidean path length), equivalently,
traveled the longest time [1], compared to nearby points,
lie on the surface of interest. This is because points consis-
tently traveling along locations where ¢ is low (on sur-
face) travel the fastest, tracing out paths that have large
arc-length.

This property can be more easily seen in the 2D case (see
Fig. 4): suppose that we wish to extract a curve rather than a
surface from a seed point, using Fast Marching to propagate
a front. At each time, the points on the front that travel the
furthest with respect to Euclidean path length lie on the 2D

Fig. 5. Schematic of quantities in the proof of Proposition 1.

curve of interest. This has been noted in 2D by [4]. In 3D
(see Fig. 4), we note this generalizes to ridge points of Euclid-
ean minimal path length Ug (defined next) are on the sur-
face. The Euclidean minimal path length Uy is defined as
follows. Define a front F'=8{z € Q: U(z) < D} where 9
denotes the boundary operator. The function U : F — R
is such that Ug(x) is the Euclidean length of the minimal
path (w.r.t. to the weight ¢) from x to p.

Computationally, U is obtained by keeping track of
another function Ug:Q — R* in Fast Marching for U.
One follows the ordered traversal of points according to
Fast Marching in solving for U, and simultaneously
updates the value of Up based on a discretization of (3)
with ¢ = 1.

The fact that ridge points lie on the surface is visualized
in the right of Fig. 4. Points on the intersection of the surface
and the front are such that in the direction orthogonal to the
surface, the minimal paths have Euclidean lengths that
decrease. This is because ¢ becomes large in this direction,
thus minimal paths travel slower in this region, so they
have lower Euclidean path length. Along the intersection of
the surface and front, the path length may increase or
decrease, depending on the uniformity of ¢ on the surface.
This implies points on the intersection of the front and sur-
face are ridge points of Ug|F*:

Proposition 1. Let S C ) be a smooth surface and p € S. Con-
sider the front F = {U = D} and suppose x € S N F then x is
a ridge point of Ug : F' — R, where Ug(y) is the Euclidean
length of the minimal path from y to p. We assume that locally
¢ is larger on S than points not on S (i.e., ¢(x + ce) > ¢(x)
for all e normal to S and all € sufficiently small).

Proof. Let € SN F and let N be a normal vector to S at z.
We choose a neighborhood V, C Q) around z so that S is
approximately flat and ¢ is approximated as

¢($)_{K2 ze SNV,

where K; > K, > 0, which are constants. This is an
approximation by step functions valid by Weierstrass’s
Theorem. Let us consider a point y =2 +eN, where
¢ > 0 is small, and the minimal path from y to p (see
Fig. 5). We note that minimal paths within V;\\S will be
straight lines as ¢ is uniform in that region. For ¢ > 0
small enough, we can find ¢ € S on the minimal path
from x to p so that the minimal path from y to p is the
straight line path from y to ¢ appended to the minimal
path from ¢ to p. We note that if we let £ = |z — ¢| then

U(z) =U(q) + K»t.
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Also,
Uly) =Ulq) + K1V £? + €2,

and any point z on the line between y and ¢ will have

U(z) =U(q) + tK\V/ ? + &2

where ¢ € (0,1). If we search for the point z on the line
between ¢ and y on the front F', which has U(z) = U(z),
we find that
p=fe
K VPt ’
Therefore, the Euclidean length of the minimal path from
ztopis

K
Ug(z) = 7?4 +len(y,,)

where len(y, ) is the length of the minimal path from ¢ to
p. Notice this has less length than the path from x to p,
which is Ug(z) = £ +len(y,,,). Therefore, Ug(z) < Ug(x).
So moving in the direction N along F' reduces the Euclid-
ean length of minimal paths. This same argument holds
for any z within V, along the direction —N from x. This
implies that € F'N .S is a one-dimensional ridge point
of UE O

This tells us that points of the front that are on the surface
must be ridge points, and so we restrict our attention to
ridge points on the front as possible points on the surface.

3.3 Ridge Curve Extraction Using the Morse
Complex

Since computing ridges directly from Definition 1, using dif-
ferential operators, is sensitive to noise, scale spaces [42],
[43] are often used. However, that approach, while being
more robust to noise, may distort the data, and it is often
difficult to obtain a connected curve as the ridge. Therefore,
we derive a robust method by making use of the Morse
complex and cubical complex theory to extract the ridge of
interest from the data Ug. Cubical complex theory guaran-
tees the correct topology of the desired ridge (as a 1-dimen-
sional closed curve).

Relation Between Ridges and Morse Complex. In the follow-
ing proposition, we note that certain ridges of a smooth
function can be computed by computing ascending mani-
folds. We assume that M is a 2-manifold.

Proposition 2. Boundaries of ascending manifolds of h are
ridges of h.

Proof. Suppose that z € 9A(p;) then for any neighborhood
V. sufficiently small around z, we have that dA(p;) NV,
divides ng, i.e., VQU = [‘/1 n A(pl)} U [ng n A(pg)} (p1 7ép2)
for the case when V, intersects two ascending manifolds.
Note that —Vh(y) - No > 0 for y € V, N A(p2) where N, is
the inward normal to dA(p2) when V; is small enough. If
this were not the case, then paths following the negative
gradient would intersect the boundary 9A(p,), which is
not the case since they flow into p;. By a similar argu-
ment, —Vh(y) - Ny < 0 for y € V,, N A(py). Since the func-
tion h is assumed smooth and thus the gradient is
continuous, we must have that Vhi(z) - Ny = 0. Further,

Fig. 6. [1st image]: Front color coded with Euclidean path length U (top
view). Red indicates high values. The bottom view (not shown) is a sym-
metric flip. Topologically, Ur forms a volcano structure (ridge, i.e., top of
volcano, is darkest red), and inside the volcano is blue. [Subsequent
images]: lllustration of iterations (from left to right) of Algorithm 1 on
noise-less data to obtain the ridge curve (white) on the Fast Marching
front (green) by computing the Morse complex of Uy. The ridge curve
lies on the surface of interest (red).

the function is decreasing away from z along the direc-
tions = N5 as points in V;\{z} belong to ascending mani-
folds. Therefore, the point « is a local maximum in the
direction N,. Ridges satisfy this property. Hence, bound-
aries of the ascending manifolds are ridges. 0

Algorithm for Ridges via Morse Complex. Next, we specify a
discrete algorithm to determine the Morse complex of
—Ug|F. The boundaries of ascending manifolds can then be
used to extract the relevant ridge. We retract the front to the
ridge curve by an ordered removal of free faces based on
lowest to highest ordering of Ug|F.

Given a front F', obtained by thresholding the distance U,
the two-dimensional cubical complex Cr of the front is con-
structed as follows. Let Z,, = {0,1,...,n — 1} be a sampling
of a coordinate direction of the image. Then

e (Cy contains all 2-faces f in Z3 between any 3-faces
g1, g2 with the property that one of g;, g» has all its 0-
sub-faces with U < D and one does not.

e Each face f of C has cost equal to the average of U
over 0-sub-faces of f.

Our algorithm for Morse complex extraction and bound-
aries of the ascending manifolds is given in Algorithm 1.
The algorithm creates holes at local minima of the function
Ug|F defined on 1-faces by removing the adjacent 2-faces. It
then removes free faces in increasing order of Ug|F so as to
preserve homotopy equivalence. The removed points asso-
ciated with a local minimum form the ascending manifold
for the local minimum. The faces that cannot be removed
without breaking homotopy equivalence, i.e., the isthmus
faces, form the boundaries of the ascending manifolds. The
algorithm removes all 2-faces and preserves only isthmus 1-
faces, and hence the remaining structure of Cr is one
dimensional. Further, since the algorithm preserves homo-
topy equivalence, the remaining structure at the end of the
algorithm is connected. This is a clear advantage over com-
putation of ridges from differential operators, which does
not guarantee connectedness. A heap is used to keep track
of the faces in order. The computational complexity of this
extraction is therefore O(NN log N) where N is the number of
pixels, an over-estimate since the faces in the complex are
significantly lower than the number of pixels.

Ideally, in the case of clean data ¢, the function U, defined
on the front would have a rather simple topology, indeed a
volcano structure (see left image in Fig. 6), where the ridge
separates the inside of the volcano from the outside. The two
minimum of Uy on each side of the ridge would correspond
to points away from the surface in the direction of the surface
normal. In this case, the previous algorithm would produce
the inside of the volcano, and the outside as two components
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Fig. 7. lllustration of Algorithm 2 operating on noisy data to obtain the
highest ridge.

of the complex, and the boundary between them as the ridge,
as desired. However, due to noise other ridge structures
besides the main ridge of interest can be extracted.

Algorithm 1. Morse Complex Extraction

1: procedure Morse ComrLEX (C, Ug)

2 > Cp = cubical 2-complex, Ug = cost on 1-faces in C
3 id«—0

4: Create heap of 1-faces ordered by Ur (min at top)

5: repeat

6 Remove 1-face g from heap

7 if g is a subset of two faces f; and f, in Cr then
8: Remove g, f1, fo from Cp

9: I(fi) < U(f2) —id,id —id +1

10: > new id for ascending manifold; hole at local min
11: else if (g, f) is a free pair in Cp then

12: Remove g, f from Cp

13: I(f) < U(fadj) where f,q; D gand fo4; ¢ Cr

14: > labels face same as adjacent face containing g
15: else if (f, g) is a free pair in Cr then

16: Remove g, f from Cp

17: else if g is isthmus then

18: (g) = {I(f1).1(f2)} where fi, f > g

19: D> label is unordered list
20: end if

21: until heap is empty

22: return Cp, [ > Ridges, labels for 2-faces, ridges

23: end procedure

Fortunately, we can simplify the extracted collection of
ridges from the previous algorithm by applying the algo-
rithm iteratively. We construct a new complex with a 2-face
for each ascending manifold computed, and a 1-face con-
necting 2-faces if two corresponding ascending manifolds
have intersecting boundaries. Each 1-face in this new com-
plex is assigned a value to be the average of 1-faces in the
common boundary between ascending manifolds. The
Morse complex of this simplified complex is then com-
puted, and the process is repeated until only one loop
remains. The algorithm is given in Algorithm 2. Fig. 7 shows
an example run through this algorithm.

An example of ridge curves detected for multiple fronts
is shown in Fig. 8. This procedure of retracting the Fast
Marching front to form the main ridge is continued for dif-
ferent fronts of the form {U < D} with increasing D. This
forms many curves on the surface of interest. In practice, in
our experiments, D is chosen in increments of AD = 20,
until the stopping condition is achieved, and this typically
results in 10-20 ridge curves extracted.

3.4 Stopping Criteria and Surface Boundary
Extraction

To determine when to stop the process of extracting ridge

curves, and thus obtain the outer boundary of the surface of

VOL. 41,

NO.3, MARCH 2019

Fig. 8. [Left]: Ridge curve (white) extraction by retracting the Fast March-
ing front at two instants. [Right]: An example cut (red) of ridge curves,
forming the surface boundary. Notice that the cut matches with the end
of high 1/¢ (bright areas).

interest, we make the following observation. Parts of the
curves generated from the previous section move slowly,
i.e.,, become close together with respect to Euclidean dis-
tance at the boundary of the surface. This is because the
speed function 1/¢ becomes small outside the surface.
Hence, for the curves ¢; generated, we aim to detect the loca-
tions where the distance between points on adjacent curves
becomes small. To formulate an algorithm robust to noise,
we formulate this as a graph cut problem [16].

Algorithm 2. Highest Ridge Curve Extraction

1: procedure HiGHESTRIDGE (CF, Ug)

2 > Cp cubical 2-complex of Fast Marching front
3 D> Euclidean trajectory length Ug defined on 1-faces
4:  repeat

5: (C%, 1) =Morse ComrLEX (CF, Ug)

6 Create 2-cubical complex C7, with

7 a 2-face f for each unique 2-face id in [

8 a 1-face g for each unique 1-face id in [

9: gjoins fi and fyif i(g) = {I(f1),l(f2)}
10: for g each 1-face in C%. do
11: R={g eCr:l(d)=149)} > a ridge
12: Uy (g) < average of Uy along R
13: end for

14: CF<—C}Q,UE<—U/E

15:  until no degree three 1-faces in C,
16:  return C%

17: end procedure

The graph G is formed as follows. Each of the curves is
resampled so that all curves have the same number of nodes
as the final curve. This is done to avoid the graph cut favor-
ing a cut of small length near the seed point. Then

e vertices V are O-faces in all the 1-complexes ¢;
formed from ridge extraction

e edges E are (vi,vs) where vy,v; € V are such that
vy, vy are connected by a 1-face in some ¢; or v; is a 0-
face in ¢; and vs is the closest (in terms of Euclidean
distance) 0-face in ¢; 1 to vy

e acost |v; — vy is assigned to each edge (vj, v;) where
v; and vy, belong to different ¢; (so that the min cut
will be where adjacent curves are close)

e for edges (v;,v;) such that v; and v, belong to the
same ¢;, the cost is the minimum Euclidean distance
between segment (v;, vj) and segments on ¢;

e the source is the seed point p, and the sink is the last
ridge curve ¢

We wish to obtain a cut of G (separating G into two dis-

joint sets) with minimum total cost defined as the sum of all
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Fig. 9. Quantities defined in the proof of Proposition 3.

costs along the cut. In this way, we obtain a cut of the ridge
curves along locations where the distance between adjacent
ridge curves is small. The process of obtaining ridge curves
from the Fast Marching front is stopped when the cost
divided by the cut size is less than a pre-specified threshold.
This cut forms the boundary of the surface. The computa-
tional cost of the cut (compared to other parts of the algo-
rithm) is negligible as the graph size is typically less than
0.5 percent of the image. Fig. 8 shows an example of a cut
that is obtained. Fig. 11 shows a synthetic example.

4 SURFACE EXTRACTION

We now present our algorithm for surface extraction. Given
the surface boundary curve determined from the previous
section, we provide an algorithm that determines a surface
going through locations of small ¢ and whose boundary is
the given curve. Our algorithm uses the cubical complex
framework and has complexity O(N log N).

4.1 Valley Extraction Algorithm and Rationale

We show now that the surface of interest lies in a valley of
U:Q — R*, the weighted minimal path length.

Proposition 3. Suppose S CR® is a smooth surface and
peS. Let ¢:Q CR>— R be a function with low values
on S and higher values outside (locally). Then S is a valley
of U, where U is the solution of the eikonal equation with
U(p) = 0.

Proof. We show that for z € S, U increases away from z in
the direction £, the normals to the surface at x. For a
small enough neighborhood V, around z, we may assume
that S'is flat and that ¢ is approximated by

‘f’(z)_{KQ resSnv,

where K; > > Ky > 0. We also assume (for now) that x
close enough to p so that p lies in V.. In this case, we see that

U(z) = U(p) + Kz|z — p| = LKy,

as the minimal path from p to z is approximately a
straight line path on the surface, as the surface is nearly
flatin V,. Let y = x £ eN for ¢ > 0 sufficiently small. We
now consider the minimal path from y to p. Note outside
the surface, the path must be nearly a straight line as ¢ is
constant. Similarly, on the surface, the minimal path
must be a straight line. We see that the minimal path is a
straight line between y and some point z on the line join-
ing « to p and then the straight line between z and p (see
Fig. 9). Therefore,

Fig. 10. lllustration of valley extraction by Algorithm 3, which retracts the
volume while preserving 1-faces on the surface boundary (red). This
gives the surface of interest.

U(y) :m/ang(Lff) +K1 \V4 £2+52

where / is the length of the segment between = and z. The
minimizer is ¢ = ¢/v1 — r2, where r = Ky/K; < 1. This
yields that

5 V2 — 12
U(y):LKQ—\/T—rQKQ +€\/17_—T2K1
= LKy +———[K\V2 — 12 — Ky] > LK,

V1—1r?

where the last inequality follows from the fact that
V2 —72 > 1and K; > Kj. Therefore, U(y) > U(z) and
so we see a local minimum in the direction N, which
implies z lies in a 2-d valley of U. We may now apply the
same argument using z to play the role of p, and show
that all points in a neighborhood of  on the surface are
on a valley. We may continue in this way to show all
points on the surface are on the valley. O

Algorithm. We can use the above fact to design an algo-
rithm for extracting the surface. We may perform a defor-
mation retraction of V) = {U < T'(0)} where 7'(0) is chosen
to enclose the entire surface, and 7'(¢) is a decreasing func-
tion of t. At each time, the points of the level set
L, ={U =T(t)} that retain the homotopy equivalence to V;
are removed from V;. We further impose that the boundary
of the surface must not be removed from V;. This way, all
points that are on the surface are retained. One can show
this with an inductive argument. Assume for a given time ¢,
the union of all retained sets is a 2-dim set S;_ (t— is just
before t) that is on the surface, and so V,_ =S5,_U
{U < T(t)}. Note that the latter set in the union is a volume.
A point z € 3S;- with U(z) = T'(t) cannot be removed. Since
x is on the surface, which by the proposition is a valley
point, the normal to the surface at z is tangent to L;, and U
is strictly increasing along the normal. Therefore, removing
point = disconnects V;_, not preserving homotopy equiva-
lence. Therefore, V; = S; U{U < T(t)} where S; contains all
points on 3S;-.

This procedure can be accomplished with an analogous
algorithm in the discrete case. We retract the cubical com-
plex of the image with the constraint that the boundary
curve 1-faces cannot be removed. We accomplish this retrac-
tion by an ordered removal of free faces based on weighted
path length U. The algorithm is described in Algorithm 3.
Fig. 10 shows the evolution from Algorithm 3 to extract the
surface from the data used in Fig. 8. Fig. 11 shows a syn-
thetic example of the evolution of this algorithm.
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Final Cut Surface Ground truth

Removal of Faces in Imaie (Algorithm 3) to Extract Surface —

Fig. 11. Synthetic example of extracting a sphere with top cut such that
the boundary is four arcs. The image (not shown) is a noisy image of the
cut sphere with holes. Ridge curves are extracted via Algorithm 1 (top
left). The final cut of ridge curves (top, middle left), the final surface
extracted via Algorithm 2 (top, middle right), and the ground truth (top,
right) are shown. Snapshots in the removal of faces in Algorithm 2 are
shown (bottom), resulting in the surface (right).

4.2 Valley: Surface of Minimal Paths

We now relate the valley that is extracted by our algo-
rithm to minimal paths. We show that the valley, and
thus the surface extracted, is a surface formed from a
collection of minimal paths to p. First, we show that the
gradient path starting from a point in the valley stays in
the valley.

Algorithm 3. Surface Extraction from Boundary of Surface

1: procedure VALLEYEXTRACT (C7, U, 35)

2 > Cr = cubical 3-complex of image, U = FM distance
3 D> 95 = boundary of surface (1-complex)
4:  Create heap of 2-faces ordered by U (max at top)

5: repeat

6 Remove 2-face g from heap

7 if (g, f) is a free pair in C; for some f then

8 Remove f and g from C;

9 else if (f,g) is a free pair in C; for some f and

gNaS = (then
10: Remove f and g from Cf
11: end if

12:  until heap is empty
13:  return C;
14: end procedure

> 2-cubical complex of Valley

Proposition 4. Suppose x € M is a valley point of h : M — R,
then the path y determined by the gradient descent of h with
initial condition x lies on the valley of h containing x.

Proof. For simplicity, we assume M = R? and that the val-
ley is two-dimensional. By definition of a 2D valley in R?,
we have that Vhi(z)- N, =0 and N?Hh(z) N, > 0 for
some unit direction N, € R® where Hh denotes the Hes-
sian. For every neighborhood V, of z sufficiently small,
there exists ye€V, such that Vh(y)-N,=0 and
N Hh(y) - N, > 0 for some N,. If that were not the case,
then = would be an isolated critical point, which is not the
case. By smoothness of h, N is a smooth function. Let S
be the points the satisfy the conditions on the gradient
and Hessian in V.

We consider the path y defined by the gradient
descent of h starting from x. Then by definition of y and

NO.3, MARCH 2019

Fig. 12. Example surfaces in our synthetic dataset. Each surface has a
different boundary curve, and the surfaces are of different shape, exhib-
iting various degrees of randomness.

Taylor expansion of h,
Vh[y(At)] = Vhlz — AtVh(z)] ~ Vh(z) — AtHh(z) - Vh(z).

Taking the dot product of the above with N, ~ N, by
a Taylor expansion, we have

Vh[y(At)] - Ny ~ —AtNI Hh(z) - Vh(z).

Note that N/ Hh(z) = AN! with A > 0 since N, is an
eigenvector of Hh(z) by definition of valley. Since
NIVh(z) =0 by the definition of valley, we have that
Vhly(At)] - Nyay = 0. Also, N}?(At)Hh[y(At)] Ny > 0
as y(At) € V,. Therefore, y(At) is also in the valley, and
thus continuing this way, we can show that the path y
formed from the gradient descent is also in the valley. O

Using the last property, we can show the surface extracted
by our algorithm is a collection of minimal paths to p.

Proposition 5. Suppose V' is a valley of U, the solution of the
eikonal equation, containing the seed point p used to define U.
Then V is a union of minimal paths to p.

Proof. Let 2 € V then the path y, formed from the gradient
descent of U starting from x stays in V' by Proposition 4.
The path y, is also a minimal path since gradient paths of
U are minimal paths. Note that y, ends at p. Therefore,
we see that V' is the union of y, over all x. O

5 EXPERIMENTS

Supplementary video are available." We qualitatively and
quantitatively assess our method by comparing against
competing algorithms.

5.1 Datasets and Parameters
We evaluate our method on three datasets of 3D images.
Synthetic Dataset. We construct a synthetic dataset con-
sisting of 20 different surfaces with boundary at three differ-
ent image resolutions, 100 x 100 x 100, 500 x 500 x 500 and
800 x 800 x 800. Each of the surfaces have different 3D
boundary curves of different shape, and surfaces that have
various degrees of coarse and fine features. Example surfa-
ces are shown in Fig. 12. The images are formed by setting
pixels not within distance 1 to the surface to 1 and all other
pixels to 0. The surfaces meshes are downsampled for the
lower resolution images. Noise with level o = 0.1 is then
added to the images.

1. https:/ /sites.google.com/site/surfacecut/pami
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Seismic Dataset. Seismic images are formed from measure-
ments of seismic pulses reflected back from the earth’s sub-
surface. They are 3D images, and are used to measure geolog-
ical structures. We have a dataset of three volumes with
dimensions 463 x 951 x 651. The goal is to extract fault surfa-
ces, which form free-boundary surfaces within the volume.
Faults may have significant curvature, and the boundaries
are non-planar. The images are cluttered and noisy, and faults
can be found by locating discontinuities, which is difficult
due to subtle edges. Each image consists of multiple faults.
We have obtained ground truth segmentations (human anno-
tated) of two faults within each image for each slice.

Lung CT Dataset. We use a dataset of 10 3D computed
tomography (CT) of the lung of cancer patients from the
Cancer Imaging Archive (TCIA) [44]. Each image has size
512 x 512 x Z, where Z varies between 300 and 700,
depending on the patient. Our goal is to segment lung fis-
sures (e.g., [45], [46]), which are the boundaries between
sections of the lung. They are very thin, subtle structures,
and form free-boundary surfaces. Each of the lung fissures
in each image is human annotated, for every slice.

Parameters. Our algorithm, given the local surface like-
lihood ¢, requires only one parameter, the threshold on
the cut cost. In all experiments, we choose this to be
T = 5. This is not sensitive to the data (see Supplemen-
tary, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2018.2811810).

5.2 Evaluation Methodology

We validate our results with quantification measures for
both the accuracy of the surface boundary and the surface
using quantities analogous to the precision, recall and F-
measure. We represent the surface and its boundary as vox-
els. Let S, denote the surface returned by an algorithm and
let Sy, be the ground truth surface. Denote by 95, and 35S
the respective boundaries. We define precision, recall and
F-measure as

N(r—gt)=H{veS, :ds,(v) < e}
N(gt —r) =|{v e Sg : ds, (v) < €}
Pg=N(r— gt)/|5:|,
Rg = N(gt — r)/[Sql,
Fs =2PsRs/(Ps + Rs)
GT Cov. = (N(r — gt) + N(gt — 7))/ (IS + [Sal),

where dg(v) denotes the distance between v and the closet
point to S using Euclidean distance, | - | denotes the number
of elements of the set, and ¢ > 0. The precision measures
how close the returned surface matches to the ground truth
surface. The recall defined above measures how close the
ground truth matches to the surface. The F-measure pro-
vides a single quantity summarizing both precision and
recall. GT-Cov. is another metric summarizing both the pre-
cision and recall. All quantities are between 0 and 1 (higher
is more accurate). The precision and recall are similar to
accuracy and completeness for closed surfaces in evaluating
stereo reconstruction algorithms [47]. We similarly define
precision Pjg, recall Rys and F-measure for 95, and 95y
using the same formulas but with the surfaces replaced

TABLE 1
Comparison of Methods for Surface Extraction Given the
Surface Boundary on the Synthetic Dataset

100 x 100 x 100 pixel images

Method  Time F GT-Cov. P R

LP 1167 093 £0.01 0.94+0.01 091+0.02 0.96+0.01
MCNF 12.75 092 +0.01 0.90+0.01 0.93+0.01 0.92+0.02
Surfcut 1.87  0.95+0.02 0.95+0.02 0.96+0.02 0.94 +0.03

500 x 500 x 500 pixel images

Method  Time F GT-Cov. r R

LP > 24 hr NA NA NA NA
MCNF 35614 0.94+0.01 0.92+0.01 0.94+0.01 0.93+0.01
Surfcut 421 0.96 +£0.01 0.96 +0.01 0.97 +0.01 0.94 + 0.01

800 x 800 x 800 pixel images

Method  Time F GT-Cov. P R

LP > 24 hr NA NA NA NA
MCNF > 24 hr NA NA NA NA
Surfcut 2227  0.96 +0.01 0.97 +£0.01 0.98 +0.01 0.95+ 0.02

Speed (in seconds), surface precision (P), recall (R), F-measure (F), and ground
truth covering (GT-cov) are reported. Higher P, R, F, GT-Cov. indicate better
fidelity to the ground truth.

with their boundaries. We set ¢ = 3 to account for inaccura-
cies in the human annotation.

5.3 Evaluation
5.3.1  Synthetic Data: Surface Extraction Given
Boundary

We first evaluate three methods for surface extraction given a
3D-boundary curve of the surface, discrete-minimal surface
computed with linear programming (LP) [8], discrete-mini-
mal surface approximated with Minimum-Cost Network
Flow (MCNPF) [8], [21], [23], [24], and our surface extraction,
described in Section 4. We use Gurobi’s state-of-the-art linear
programming implementation, to implement LP. We use the
Lemon library [48] to implement MCNF. There are no other
methods that solve this problem. We choose ¢ to be the
image. All methods are provided the ground truth 3D
boundary curves. We evaluate the methods in terms of
computational time, and in terms of surface accuracy. A
summary of results are provided in Table 1. Average of
results over all the images are provided. Our method is com-
putationally faster than all other methods at all resolutions.
LP is unable to perform in a reasonable time frame for images
sizes above 100?, and MCNF is unable to perform for image
sizes above 500%. At all resolutions, our method is faster.
Speeds are reported on a single Pentium 2.3 GHz processor.
The accuracy of our method is also the highest on all meas-
ures, but all have similar accuracies. The advantage of our
method is clearly speed, and ability to deal with high resolu-
tion images. Note that the analysis was not extended to the
real datasets as they have high resolution, making it too com-
putationally expensive to test, and down-sampling the
images destroys the structures to be extracted.

5.3.2 Seismic Data: Surface and Boundary Extraction

We now compare against the competing method for free
boundary surface extraction. To the best of our knowledge,
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Fig. 13. Quantitative analysis of smoothing parameter. Boundary (left)
and surface (right) F-measure versus smoothing degradations for our
method and [25].
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Fig. 14. Qualitative analysis of smoothing parameter. Results displayed
by varying the parameter in ¢ (larger towards the right). Surfaces
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Fig. 15. Quantitative analysis of noise degradations. Boundary (left) and
surface (right) F-measure versus the noise degradation plots for our
method and [25].

there is no other general algorithm that extracts both the
boundary of the free-surface and the surface given a seed
point. Therefore, we compare our method in an interactive
setting and automated setting (with seed points automati-
cally initialized) to Crease Surfaces [25]. It computes the
smoothed Hessian of ¢, and computes a modified matrix
based on the relative difference in the first and second high-
est eigenvalues. It then forms the surface by determining
locations where the eigenvector aligns with the gradient,
and constructs connected surfaces. In an interactive setting,
we choose the surface returned by [25] that is near to the
user provided seed point (and best fits ground truth) to pro-
vide comparison to our method. In an automated setting,
we use a seed point extraction algorithm (described later) to
initialize our surface extraction.

We choose ¢(z) to be the semblance measure in [9]; this
along with [25] is state-of-the-art for seismic data.

Robustness to Smoothing Degradations. The semblance ¢
contains a smoothing parameter, which must be tuned to
achieve a desirable segmentation. Therefore, it is important
that the surface extraction algorithm be robust to changes in
the parameter of the likelihood. Thus, we evaluate our algo-
rithm as we vary the smoothing parameter. The smoothing
parameter is varied from o =0, 2,3, ..., 14. We initialize our
algorithm with a user specified seed point. Quantitative
results are shown in Fig. 13, where we plot the F-measure
versus the smoothing amount both in terms of surface and

NO.3, MARCH 2019

Crease Surface (for increasing noise —)

- -f-

Fig. 16. Qualitative analysis of noise degradations. Results displayed by
varying the additive noise to ¢ (larger towards the right). Surfaces
extracted by Crease surfaces and our method are displayed with the
ground truth.

Fig. 17. Slice-wise validation on seismic data: [Left column]: Slices cor-
responding to x-y, x-z, and y-z planes, [Middle, left]: Local surface likeli-
hood (1/¢), [Middle right]: Intersection of SurfCut result (green) with
slice, [Right column]: surface from SurfCut at certain viewpoint.

boundary measures. Some visual results of the surfaces are
shown in Fig. 14. Notice our method degrades only gradu-
ally and maintains consistently high accuracy in both meas-
ures in contrast to [25].

Robustness to Noise. In applications, the image may be dis-
torted by noise (this is the case in seismic images where the
SNR may be low), and thus we evaluate our algorithm as
we add noise to the image, and we fix the smoothing param-
eter of the semblance ¢(z) to the one with highest F-measure
in the previous experiment. We choose noise levels as fol-
lows: 6% = 0,0.05, . ..,0.5. Quantitative results are shown in
Fig. 15, and some visualizations of the surfaces are shown
in Fig. 16. Results show that our method consistently
returns an accurate result in both measures, and degrades
only slightly.

Slice-wise Validation. We now show some visual valida-
tion of our method by showing that the surface intersects
with slices of the image in locations where there is a fault,
and thus the value of ¢ is low. This is shown in Fig. 17.
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Fig. 18. Robustness to seed point choice: [Left]: A visualization of the
seed points chosen. [Right]: Boundary F-measure versus various seed
point indices. The same boundary and surface accuracy is maintained
no matter the seed point location.

Robustness to Seed-Point Location. We demonstrate that
our surface extraction method is robust to the choice of the
seed point location. To this end, we randomly sample 30
points (with high local likelihood) from the ground truth
surface. We use each of the points as seed points to initialize
our algorithm. We measure the boundary and surface accu-
racy for each of the extracted surfaces. Results are displayed
in Fig. 18. They show our algorithms consistently returns a
boundary and surface of similar accuracy regardless of the
seed point location.

Analysis of Automated Algorithm. Even though our contri-
bution is in the surface and boundary extraction from a seed
point, we show with a seed point initialization, our method
can be automated. We initialize our algorithm with a simple
automated detection of seeds points. We extract seed points
by finding extrema of the Hessian and then running a piece-
wise planar segmentation of these points using RANSAC
[49] successively; the point on each of the segments located
closest to other points on the segment are seed points. This
operates under the assumption that the surfaces are roughly
planar. If not, there could possibly be redundant seed points
on the same surface, which would result in repetitions in sur-
faces in our final output. This could easily be filtered out. We
run our boundary curve extraction followed by surface
extraction for each of the seed points on the original datasets.
We compare to [25]. There are 6 ground truth surfaces in this
dataset. Our algorithm correctly extracts 6 surfaces, while
[25] extracts 4 surfaces (2 pairs of faults are merged together
each as a single connected component). Results on a dataset
are visualized in Fig. 19 (each connected component in

TABLE 2
Quantitative Evaluation on Lung Dataset

Surface accuracy
Method F GT-Cov. P R
076 £0.08 0.70£0.10 0.67+0.11 0.91 £0.06

Crease Surfaces

Surfcut 0.91+0.04 0.87+£0.06 0.86=+0.06 0.95+0.02
Boundary accuracy
Method F GT-Cov. P R

070+£0.11 0.72+£0.08 0.69+0.10 0.71+0.12
0.86 £0.04 0.86+0.06 0.85+0.06 0.87+0.05

Crease Surfaces
Surfcut

Comparison of methods in terms of surface and boundary accuracy. Precision
(P), recall (R), F-measure (F), and ground truth covering (GT-cov) are
reported. Higher P, R, F, GT-Cov. indicate better fidelity to the ground truth.

different color). Notice that Crease Surfaces has holes, cap-
tures clutter, and connects separate faults.

Computational Cost. We analyze run-times on a dataset of
size 463 x 951 x 651. The run-time of our algorithm depends
on the size of the surface. To extract one surface, our algo-
rithm takes on average 10 minutes (9 minutes for the bound-
ary extraction and 1 minute for the surface extraction).
Automated seed point extraction takes about 3 minutes.
Therefore, the total cost of our algorithm for extracting 6
faults is about 1 hour. We note that after seed point extrac-
tion, the computation of surfaces can be parallelized. In com-
parison, [25] takes about 2 hours on the same dataset. Speeds
are reported on a single Pentium 2.3 GHz processor.

5.3.3 Lung CT Data: Surface and Boundary Extraction

We now compare to Crease Surfaces for the Lung CT data-
set. We compare the methods under the settings described
in the previous section. For medical data, we modify the
matrix based on the Hessian in Crease Surfaces to another
matrix based on closeness to a plate-like structure as com-
mon in lung fissure detection [46], [50], [51]. State-of-the-art
methods in fissure extraction use a method similar to Crease
surfaces to extract the surface. We choose ¢ to be the plate-
ness measure in our method. Quantitative results on the
entire dataset are summarized in Table 2. Both in terms of

Fig. 19. Example result in an automated setting. [Left]: Result by Crease
surfaces, which contains holes and incorrectly detects clutter (top, red)
due to noise in the data. [Right]: Results of SurfCut, which extracts the
correct number of surfaces and produces smooth simple surfaces.

Fig. 20. Slice-wise validation in lung CT dataset. [Top]: Various slices of
an image of a patient, [Bottom]: Surface generated with SurfCut inter-
sected with the slice above (green) superimposed on the slice. Notice
the structure of interest is a subtle thin lines in the slices (top).
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Ground Truth

Crease Surface

SurfCut

Fig. 21. Qualitative results on lung CT. Columns show the surfaces on
the same slice on the same patient for various methods. Moving through
a row shows the surface for different patients, and a slice of the image is
shown for various different slices. SurfCut extracts more of the fine
structure of the fissures, better estimates the boundary, and recovers
more of the surfaces than Crease surfaces.

surface and boundary accuracy, our method is more accu-
rate with respect to all measures. Visual validation of our
method on slice-wise views of the surface and image is
shown in Fig. 20. Some visualizations of the surface results
are shown in Fig. 21. Various slices are shown to help visu-
alize features of the image. Crease surface generates
surfaces with incorrect holes and many times cannot cap-
ture the entire fissure, hence low recall and precision on the
boundary metrics. SurfCut does not contain any holes and
accurately captures very fine and thin structures near the
boundaries of the fissures.

6 CONCLUSION

We have provided a general method for extracting a smooth
simple (without holes) surface with unknown boundary in a
3D image with noisy local measurements of the surface, e.g.,
edges. Our novel method takes as input a single seed point,
and extracts the unknown boundary that may lie in 3D. It
then uses this boundary curve to determine the entire sur-
face efficiently. We have demonstrated with extensive
experiments on noisy and corrupted data with possible
interruptions that our method accurately determines both
the boundary and the surface, and it is robust to seed point
choice. In comparison to extracting connected components
of edges in 3D images, our method is more accurate in both
surface and boundary measures. The computational cost of
our algorithm is less than competing approaches.

A limitation of our method (as with competing methods)
is extracting intersecting surfaces. Our boundary extraction
method may extract boundaries of one or both of the surfa-
ces depending on the data. However, if given the correct
boundary of one of the surfaces, our surface extraction pro-
duces the relevant surface. This limitation is the subject of
future work, which is relevant to faults in seismic images.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 41,

NO.3, MARCH 2019

ACKNOWLEDGMENTS
Funded by KAUST OCRF-2014-CRG3-62140401 and VCC.

REFERENCES

[3]

[4]

[71

(8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

L. D. Cohen and R. Kimmel, “Global minimum for active contour
models: A minimal path approach,” Int. |. Comput. Vis., vol. 24,
no. 1, pp. 57-78,1997.

J. A. Sethian, “A fast marching level set method for monotonically
advancing fronts,” Proc. Nat. Academy Sci. United States America,
vol. 93, no. 4, pp. 1591-1595, 1996.

J. N. Tsitsiklis, “Efficient algorithms for globally optimal
trajectories,” IEEE Trans. Autom. Control, vol. 40, no. 9, pp. 1528-
1538, Sep. 1995.

V. Kaul, A. Yezzi, and Y. Tsai, “Detecting curves with unknown
endpoints and arbitrary topology using minimal paths,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 34, no. 10, pp. 1952-1965, Oct. 2012.

J. Mille, S. Bougleux, and L. D. Cohen, “Combination of piecewise-
geodesic paths for interactive segmentation,” Int. . Comput. Vis.,
vol. 112, no. 1, pp. 1-22, 2015.

F. Benmansour and L. D. Cohen, “From a single point to a surface
patch by growing minimal paths,” in Proc. Int. Conf. Scale Space
Variational Methods Comput. Vis., 2009, pp. 648—659.

R. Ardon, L. D. Cohen, and A. Yezzi, “A new implicit method for
surface segmentation by minimal paths: Applications in 3D medi-
cal images,” in Proc. Int. Workshop Energy Minimization Methods
Comput. Vis. Pattern Recognit., 2005, pp. 520-535.

L. Grady, “Minimal surfaces extend shortest path segmentation
methods to 3D,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32,
no. 2, pp. 321-334, Feb. 2010.

D. Hale, “Methods to compute fault images, extract fault surfaces,
and estimate fault throws from 3D seismic images,” Geophysics,
vol. 78, no. 2, pp. O33-043, 2013.

J. M. Sullivan, “A crystalline approximation theorem for hyper-
surfaces,” Ph.D. dissertation, Princeton University, 1990.

V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,”
Int. ]. Comput. Vis., vol. 22, no. 1, pp. 61-79, 1997.

A. Yezzi Jr, S. Kichenassamy, A. Kumar, P. Olver, and A. Tannen-
baum, “A geometric snake model for segmentation of medical
imagery,” IEEE Trans. Med. Imag., vol. 16, no. 2, pp. 199-209,
Apr. 1997.

T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE
Trans. Image Processing, vol. 10, no. 2, pp. 266-277, Feb. 2001.

S. Osher and J. A. Sethian, “Fronts propagating with curvature-
dependent speed: Algorithms based on Hamilton-Jacobi for-
mulations,” J. Comput. Phys., vol. 79, no. 1, pp. 12-49, 1988.

T. Pock, T. Schoenemann, G. Graber, H. Bischof, and D. Cremers,
“A convex formulation of continuous multi-label problems,” in
Proc. Eur. Conf. Comput. Vis., 2008, pp. 792-805.

Y. Y. Boykov and M.-P. Jolly, “Interactive graph cuts for optimal
boundary & region segmentation of objects in N-D images,” in
Proc. 8th IEEE Int. Conf. Comput. Vis., vol. 1., pp. 105-112, 2001.

C. Rother, V. Kolmogorov, and A. Blake, “Grabcut: Interactive
foreground extraction using iterated graph cuts,” ACM Trans.
Graph., vol. 23, no. 3, pp. 309-314, 2004.

J. Ulen, P. Strandmark, and F. Kahl, “Shortest paths with higher-
order regularization,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 37, no. 12, pp. 2588-2600, Dec. 2015.

R. Ardon, L. D. Cohen, and A. Yezzi, “A new implicit method for
surface segmentation by minimal paths in 3D images,” Appl.
Math. Optimization, vol. 55, no. 2, pp. 127-144, 2007.

L. Grady, “Computing exact discrete minimal surfaces: Extending
and solving the shortest path problem in 3D with application to
segmentation,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pat-
tern Recognit., vol. 1, pp. 69-78, 2006.

A. V. Goldberg, “An efficient implementation of a scaling mini-
mum-cost flow algorithm,” J. Algorithms, vol. 22, no. 1, pp. 1-29,
1997.

P. Kovécs, “Minimum-cost flow algorithms: An experimental
evaluation,” Optimization Methods Softw., vol. 30, no. 1, pp. 94-127,
2015.

T. Brunsch, K. Cornelissen, B. Manthey, H. Roglin, and C. Rosner,
“Smoothed analysis of the successive shortest path algorithm,”
SIAM ]. Comput., vol. 44, no. 6, pp. 1798-1819, 2015.

L. R. Ford Jr and D. R. Fulkerson, Flows in Networks. Princeton, NJ,
USA: Princeton Univ. Press, 2015.

Authorized licensed use limited to: KAUST. Downloaded on May 17,2020 at 01:56:21 UTC from IEEE Xplore. Restrictions apply.



ALGARNI AND SUNDARAMOORTHI: SURFCUT: SURFACES OF MINIMAL PATHS FROM TOPOLOGICAL STRUCTURES

[25]

[26]
[27]

[28]

[29]

[30]

[31]
(321

[33]

[34]

[35]

[36]

[371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

[49]

T. Schultz, H. Theisel, and H.-P. Seidel, “Crease surfaces: From
theory to extraction and application to diffusion tensor MRI,”
IEEE Trans. Vis. Comput. Graph., vol. 16, no. 1, pp. 109-119, Jan./
Feb. 2010.

V. A. Kovalevsky, “Finite topology as applied to image analysis,”
Comput. Vis. Graph. Image Process., vol. 46, no. 2, pp. 141-161, 1989.
T. Kaczynski, K. Mischaikow, and M. Mrozek, Computational
Homology. Berlin, Germany: Springer, 2006, vol. 157.

J. Chaussard and M. Couprie, “Surface thinning in 3D cubical
complexes,” in Proc. Int. Workshop Combinatorial Image Anal., 2009,
pp- 135-148.

K. Siddiqi, A. Shokoufandeh, S. J. Dickinson, and S. W. Zucker,
“Shock graphs and shape matching,” Int. . Comput. Vis., vol. 35,
no. 1, pp. 13-32, 1999.

T. B. Sebastian, P. N. Klein, and B. B. Kimia, “Recognition of
shapes by editing their shock graphs,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 26, no. 5, pp. 550-571, May 2004.

K. Siddiqi and S. Pizer, Medial Representations: Mathematics, Algo-
rithms and Applications. Berlin, Germany: Springer, 2008, vol. 37.
A.J. Zomorodian, Topology for Computing. Cambridge, U.K.: Cam-
bridge Univ. Press, 2009, vol. 16.

H. Edelsbrunner, J. Harer, and A. Zomorodian, “Hierarchical
morse complexes for piecewise linear 2-manifolds,” in Proc. 7th
Annu. Symp. Comput. Geometry, 2001, pp. 70-79.

H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci, “Morse-
Smale complexes for piecewise linear 3-manifolds,” in Proc. 9th
Annu. Symp. Comput. Geometry, 2003, pp. 361-370.

A. Gyulassy, P.-T. Bremer, B. Hamann, and V. Pascucci, “A practi-
cal approach to Morse-Smale complex computation: Scalability
and generality,” IEEE Trans. Vis. Comput. Graph., vol. 14, no. 6,
pp- 1619-1626, Nov./Dec. 2008.

A. Gyulassy, P.-T. Bremer, and V. Pascucci, “Computing Morse-
Smale complexes with accurate geometry,” IEEE Trans. Vis. Com-
put. Graph., vol. 18, no. 12, pp. 2014-2022, Dec. 2012.

M. Algarni and G. Sundaramoorthi, “Surfcut: Free-boundary sur-
face extraction,” in Proc. Eur. Conf. Comput. Vis., 2016, pp. 171-186.
M. Algarni, “Surfaces of minimal paths from topological struc-
tures and applications to 3D object segmentation,” Ph.D. disserta-
tion, Comput. Elect. Math. Sci. Eng., KAUST, Thuwal, Saudi
Arabia, 2017.

D. Eberly, R. Gardner, B. Morse, S. Pizer, and C. Scharlach,
“Ridges for image analysis,” ]. Math. Imag. Vis., vol. 4, no. 4,
pp. 353-373, 1994.

J. Milnor, Morse Theory.(AM-51). Princeton, NJ, USA: Princeton
Univ. Press, 2016, vol. 51.

M. G. Crandall and P.-L. Lions, “Viscosity solutions of hamilton-
jacobi equations,” Trans. Amer. Math. Soc., vol. 277, no. 1, pp. 1-42,
1983.

T. Lindeberg, “Edge detection and ridge detection with automatic
scale selection,” Int. |. Comput. Vis., vol. 30, no. 2, pp. 117-156,
1998.

M. Kolomenkin, I. Shimshoni, and A. Tal, “Multi-scale curve
detection on surfaces,” in Proc. IEEE Conf. Comput. Vis. Pattern Rec-
ognit., 2013, pp. 225-232.

G. D. Hugo, E. Weiss, W. C. Sleeman, S. Balik, P.]. Keall, J. Ln, and
J. F. Williamson, “A longitudinal four-dimensional computed
tomography and cone beam computed tomography dataset for
image-guided radiation therapy research in lung cancer,” Med.
Phys., vol. 44, pp. 762-771, doi: 10.1002/mp.12059

B. Lassen, E. M. van Rikxoort, M. Schmidt, S. Kerkstra, B. van Gin-
neken, and J.-M. Kuhnigk, “Automatic segmentation of the pul-
monary lobes from chest CT scans based on fissures, vessels, and
bronchi,” IEEE Trans. Medical Imaging, vol. 32, no. 2, pp. 210-222,
Feb. 2013.

C. Xiao, B. C. Stoel, M. E. Bakker, Y. Peng, ]. Stolk, and M. Staring,
“Pulmonary fissure detection in CT images using a derivative of
stick filter,” IEEE Trans. Medical Imaging, vol. 35, no. 6, pp. 1488—
1500, Jun. 2016.

S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, “A
comparison and evaluation of multi-view stereo reconstruction
algorithms,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit., vol. 1, pp. 519-528, 2006.

B. Dezs6, A. Jiittner, and P. Kovdcs, “Lemon—an open source c++
graph template library,” Electron. Notes Theoretical Comput. Sci.,
vol. 264, no. 5, pp. 2345, 2011.

R. B. Rusu and S. Cousins, “3D is here: Point cloud library (PCL),”
in Proc. IEEE Int. Conf. Robot. Autom., 2011, pp. 1-4.

[50]

[51]

739

R. Wiemker, T. Bilow, and T. Blaffert, “Unsupervised extraction
of the pulmonary interlobar fissures from high resolution thoracic
CT data,” in Proc. Int. Congr. Series, vol. 1281, pp. 1121-1126, 2005.
E. M. van Rikxoort, B. van Ginneken, M. Klik, and M. Prokop,
“Supervised enhancement filters: Application to fissure detection
in chest CT scans,” IEEE Trans. Med. Imag., vol. 27, no. 1, pp. 1-10,
Jan. 2008.

Marei Algarni received the BS degree in com-
puter science from King Abdulaziz University,
Saudi Arabia, the MSc degree with Merit from the
University of Bradford/United Kingdom, in 2008,
and the PhD degree in computer science from
the King Abdullah University of Science and
Technology (KAUST), in 2017. He worked with
Saudi Aramco. He is currently a researcher with
Saudi Aramco. His research interests include
computer vision with interest in segmentation of
3D scientific datasets.

Ganesh Sundaramoorthi received the PhD
degree in electrical and computer engineering
from the Georgia Institute of Technology, Atlanta.
He was then a postdoctoral researcher in the
Computer Science Department with the University
of California, Los Angeles between 2008 and
2010. In 2011, he was appointed assistant profes-
sor of Electrical Engineering and assistant profes-
sor of Applied Mathematics and Computational
Science with the King Abdullah University of
Science and Technology (KAUST). His research

interests include computer vision and its mathematical foundations with
recent interest in shape and motion analysis, video analysis, invariant rep-
resentations for visual tasks, and applications in medical and scientific
imaging. He was an area chair for ICCV 2017, and CVPR 2018.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: KAUST. Downloaded on May 17,2020 at 01:56:21 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1002/mp.12059


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


