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A New Geometric Metric in the Space of Curves, and Applications to Tracking
Deforming Objects by Prediction and Filtering∗
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Abstract. We define a novel metric on the space of closed planar curves which decomposes into three intu-
itive components. According to this metric, centroid translations, scale changes, and deformations
are orthogonal, and the metric is also invariant with respect to reparameterizations of the curve.
While earlier related Sobolev metrics for curves exhibit some general similarities to the novel metric
proposed in this work, they lacked this important three-way orthogonal decomposition, which has
particular relevance for tracking in computer vision. Another positive property of this new metric
is that the Riemannian structure that is induced on the space of curves is a smooth Riemannian
manifold, which is isometric to a classical well-known manifold. As a consequence, geodesics and
gradients of energies defined on the space can be computed using fast closed-form formulas, and
this has obvious benefits in numerical applications. The obtained Riemannian manifold of curves
is ideal for addressing complex problems in computer vision; one such example is the tracking of
highly deforming objects. Previous works have assumed that the object deformation is smooth,
which is realistic for the tracking problem, but most have restricted the deformation to belong to
a finite-dimensional group—such as affine motions—or to finitely parameterized models. This is
too restrictive for highly deforming objects such as the contour of a beating heart. We adopt the
smoothness assumption implicit in previous work, but we lift the restriction to finite-dimensional
motions/deformations. We define a dynamical model in this Riemannian manifold of curves and use
it to perform filtering and prediction to infer and extrapolate not just the pose (a finitely param-
eterized quantity) of an object but its deformation (an infinite-dimensional quantity) as well. We
illustrate these ideas using a simple first-order dynamical model and show that it can be effective
even on image sequences where existing methods fail.
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1. Introduction. Shape theory is central in computer vision because shapes partially
characterize objects in images. Shapes appear in two broad categories of applications:

• shape optimization, where we want to find the best shape according to a criterion;
examples include image segmentation and object tracking; and

• shape analysis, where we study families of shapes for purposes of statistics, (automatic)
cataloging, probabilistic modeling, etc.
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In this paper, the shapes we focus on are represented by smoothly immersed planar curves1

which constitute the boundaries of compact domains (representing the boundaries of physical
objects projected into the imaging plane). As is customary in the literature of active contours
[23], we will somewhat abusively call these curves embedded curves in the rest of this paper.
It should be noted that the shape space classically used in shape optimization (i.e., active
contours) is more precisely identified as the space of embedded curves, up to a choice of
parameterization, whereas in shape analysis the space is usually identified as the space of
embedded curves, up to rotation, translation, scaling, and reparameterization.

The usage of the space of curves as a shape space in applications has predated the proper
mathematical study of this shape space by almost two decades. Historically, in the active
contour literature, many authors [23, 4, 29, 25, 5, 16] have defined energy functionals on
curves, whose minima represent the desired object(s). In more recent works [45, 62, 59, 7],
the curve was considered to be a contour partitioning the image into statistically distinct
regions. In all cases, the authors utilized the calculus of variations to derive curve evolutions
to search for the minima of the energy, often referring to these evolutions as gradient flows.
Calling the minimizing flows gradient flows, however, implies a certain Riemannian metric on
the space of curves.

Modeling the space of curves as a Riemannian manifold also has obvious benefits in shape
analysis: indeed the distance between curves can be used for clustering, the geodesic can
be used to define the average of two shapes, and so on. However, recently, in [33, 58] it was
observed that nearly all previous works on geometric active contours that derive gradient flows
to minimize energies (i.e., shape optimization) imply a natural notion of Riemannian metric,
given by a geometric version of the standard L2 inner product, which we will call H0 in (7).
Subsequently, in [33, 57] a surprising property has been shown: the H0 Riemannian metric
on the space of curves is not meaningful, since the “distance” between any two curves is zero.
(This phenomenon is an example of a more general property; indeed in [34] it is proved that
the Fubini–Study metric induces geodesic distance 0 in the nonlinear Grassmannian of all
submanifolds of type M in a Riemannian manifold (N, g).)

This opened a new period of mathematical study, with the goal of finding a new metric
in the space of curves that would provide a well-founded model. Many models have been
presented, usually to be used either in shape analysis or in shape optimization but not both.
The study of shapes as points on an infinite-dimensional space has thus been the subject of
considerable interest [35, 32]; models and theory have been presented in [8, 36, 1, 13, 61, 46, 56].

Going back to the shape optimization tasks, many papers contain methods and studies
that show that the active contour paradigm is successful in addressing object detection/image
segmentation. Those methods can be extended to visual tracking, that is, to temporally vary-
ing data; the extension typically involves two steps. One is to collect local statistics from
a single image (e.g., intensity histograms, spatial and temporal regularized derivatives, etc.)
and use them to partition the image domain into regions that have homogeneous statistics

1We note that all of the mathematical theory connected with the metric presented in this paper depends
only upon the assumption of immersedness. The extra assumptions are needed only when pairing this theory
together with various region-based energies that are typically minimized in various computer vision applications,
including the tracking applications demonstrated at the end of this paper. Such energies are defined only for
curves which have a well-defined interior/exterior, which is not the case for all immersed curves.
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[5, 25, 38, 7, 12, 42]. The other step is to incorporate a model of the temporal variation
of the deforming object into the tracking algorithm. The simplest way to extend the active
contour methodology to time-varying imagery is to use the contour estimated at time “t” as
initialization for the same gradient-based optimization at time “t + 1” [7]. This approach
implicitly assumes trivial dynamics (“constant position plus perturbation”), so its predic-
tion would trail an object moving with constant speed with a constant error. Better dynamics
(“constant velocity plus perturbation”) have been developed both for parametric [2, 53, 21, 43]
and geometric [44, 39, 22] active contour models, the latter implemented using level set meth-
ods [40]. While these methods can more accurately predict the (affine) motion of the object,
their deformation model remains overly simplistic, as—on average—they assume no deforma-
tion. So, the prediction of the motion of a jelly fish would extrapolate its affine trajectory
(position, orientation, scale, and skew) but “freeze” its shape to the last observation. The
dynamical model—and therefore the predictive ability of the tracking scheme—is restricted
to the finite-dimensional portion of the actual object deformation.

Recent work has moved beyond the assumption of affine motion [11, 54]. In [11], the
motion/deformation is described by a linear autoregressive model defined on combinations
of distance functions given as a training set. The applicability of this method is therefore
restricted by the availability of training data for every particular object class and its associated
deformations. In [54], the authors use a small time-varying basis, which is finite-dimensional
but goes beyond affine, to dynamically model local deformations of the contour. In [41], an
optimal control approach is constructed to moderate between a model based on optical flow
[20] and the results of image segmentation, which results in temporal consistency of the object
when compared to frame-by-frame image segmentation. While the model (i.e., a transport
equation) allows for deformations beyond affine, the model is defined on the entire domain of
the image, and therefore the model is not intrinsic to the geometry of the deforming object.
A model that is restricted to the object is natural for tracking because typically the dynamics
of the object of interest are less complex than the object plus the background, which can have
additional dynamics. Also, the model of [41] is tied to image measurements via optical flow
and therefore may have problems in the case of noisy/corrupted image measurements or when
the brightness constancy assumption does not hold. In [17], deformations that are not affine
are considered by mapping views of a single three-dimensional (3D) object to the 2-sphere (in
R3), and a constant velocity model is constructed on the mapped space. The mapping limits
the shapes to projections from different viewpoints of the chosen 3D object, and, moreover,
the approach assumes that the underlying 3D object being viewed is rigid.

1.1. Paper contributions. In the first part of the present work, we construct a Riemannian
structure on the space of curves using a geometric-type Sobolev metric, which will be presented
in Definition 3.1. While this metric will resemble some prior geometric Sobolev-type metrics
for curves, it will exhibit a deliberate modification which was imposed to yield a special
three-fold orthogonal decomposition (Theorem 3.4) chosen specifically for its usefulness in
visual tracking applications. We present the relevant properties, as well as the formulas and
methods to compute geodesics, parallel transport, and gradients of energies defined on curves
according to this specialized metric. We show that, using our metric, all these operations
can be numerically computed using fast algorithms. This metric builds on the experience of
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previous examples of Sobolev metrics [60, 35, 51, 61]; in particular, it extends the ideas found
in [61] to the space of all embedded curves, so that this Riemannian metric can be used to
address problems in shape analysis and shape optimization and any desired combination of
the two.

A Riemannian structure on the space of embedded curves, we show, also provides the
means for constructing dynamical systems on curves, which is useful for modeling the dynamics
of deforming objects. To illustrate these ideas, in the second part of this paper we consider the
task of tracking highly deforming objects, such as a walking human, a maneuvering vehicle,
a moving animal, etc., from time-varying images. We are interested in the changes of shape
induced by motion on the boundaries of the projection of objects of interest onto an image.
For instance, the silhouette of a walking person undergoes complex deformations, including
changes of topology as gaps open between limbs and the trunk. We wish not only to predict
the coarse motion or pose of the boundary curves but also to extrapolate their deformation.2

To this end, we present a simple (infinite-dimensional) constant velocity dynamical model
of the contour and then derive an associated filter that predicts and estimates the contour
and its deformation based on local image statistics. For simplicity, in this work we consider
intensity statistics, but local spatiotemporal filters could be used as well. Note that in [52]
tracking is considered, but prediction and estimation, which is one of the main contributions
of the present work, is not performed.

One benefit in using Sobolev-type metrics in tracking is that they favor smooth motions
of the curve without restricting its deformation [51]. The metric studied in [51], however, did
not allow for an efficient computation of geodesics, whereas the new metric presented in this
paper allows for efficient calculation of geodesics.

It must be noted that one sure way to avoid infinite-dimensional Riemannian geome-
try (and the pathologies associated with some metrics) is to model the shape space as a
finite-dimensional manifold : such is the case, for example, in the work of Kendall [24] (some
more recent works include, e.g., [26, 3]). It is certainly possible to model curves using a
finite-dimensional family of parameters, for example, using splines. This modeling, however,
introduces later problems in tracking applications, since the motion of control points along the
curve has to be factored out of the shape dynamics. Moreover, such finite-dimensional repre-
sentations restrict the space of allowable deformations, which could have detrimental effects
when tracking highly deforming objects. In this paper, we propose a tracking method where
we define a dynamical model directly on the infinite-dimensional space of curves (allowing any
smooth deformation), so as to model the deformation of the object of interest in a way that
is natural with respect to the object’s geometry.

A preliminary conference version of this paper appeared in [48]. The current version gives
detailed mathematical proofs and computations of the statements in the conference version.
In Appendix C, we have added a new gradient descent procedure for the image segmentation
that now corresponds with the new Sobolev metric presented in section 3. We have also added
a new experiment testing the approach on MRI data. A forthcoming paper will contain more

2We use the terms “motion” and “(shape) deformation” informally in this section but in a way compatible
with the definitions of [47]. In particular, “deformation” means a change in shape, and shape is defined as the
quotient of closed planar curve with respect to a finite-dimensional group [30] (in this paper, the group is the
identity).
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mathematical analysis of the Riemannian metric presented in Definition 3.1.

2. Geometry in the space of curves. We define the space of smooth planar immersed
curves as

(1) M = {c ∈ C∞(S1,R2) : |c′(θ)| "= 0 ∀θ ∈ S1},

where S1 is the circle, and c′(θ) is the usual parametric derivative of c. The tangent space
TcM at c is the set of vector fields h on c, i.e., h : S1 → R2, which represent infinitesimal
deformations of c.

We will endowM with a Riemannian metric ‖h‖c which we will then use to define distances
between curves in M , geodesics (i.e., shortest paths), the exponential map, and all other
standard tools that are found in common texts on Riemannian geometry, such as [14, 27].
All these tools will be essential, in particular, to define dynamical models in the infinite-
dimensional space of curves.

2.1. Geometric curves. We are interested in geometric curves, i.e., curves considered
up to reparameterizations. Let Diff(S1) denote the group of diffeomorphisms of S1; given
φ ∈ Diff(S1) and a curve c ∈ M , the composition c ◦ φ is a reparameterization of the c. For
technical reasons, we identify the slightly more restrictive subspace Mf of all freely immersed
curves that are the curves c ∈ M such that if φ ∈ Diff(S1) and c(φ(θ)) = c(θ) for all θ, then
φ is the identity. This space is a dense open subset of the space M ; see [6] for a detailed
proof. The advantage of this space is that we may define the space of geometric curves as the
quotient space

(2) B = Mf/Diff(S1),

and it can be shown that B remains a manifold (see [35] or [6, Thm. 1.5], whereas the quotient
M/Diff(S1) unfortunately is not a manifold. We will use the notation [c] to indicate all possible
parameterizations of the curve c; that is, [c] is an element of B.

Assuming that the chosen Riemannian metric ‖h‖c in M is reparameterization-invariant,
then we can project it to B, so as to define a metric on B. The distance in B can be defined
as follows.

Definition 2.1. The distance d : B × B → R+ between two curves [c0] ∈ B and [c1] ∈ B is
defined by

(3) d([c0], [c1]) = inf
φ∈Diff(S1)

inf
γ∈Γ(c0,c1◦φ)

Len(γ),

where
Γ(c0, c1) = {γ : [0, 1] → Mf : γ(0) = c0, γ(1) = c1}

is the set of all smooth paths (of intermediate curves) connecting c0 to c1,

(4) Len(γ) =

∫ 1

0
‖γ̇(t)‖γ(t) dt

is the length of a path γ, γ̇(t) ∈ Tγ(t)Mf is the velocity (that is, the time derivative) of γ(t),
and ‖ · ‖γ(t) is the norm on Tγ(t)Mf .
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Definition 2.2. A minimal geodesic in B between [c0] and [c1] is a path γ∗ that attains the
infimum in (3). Equivalently, up to a time reparameterization of the path γ∗, γ∗ solves

(5) inf
φ∈Diff(S1)

inf
γ∈Γ(c0,c1◦φ)

E(γ),

where

(6) E(γ) =
∫ 1

0
‖γ̇(t)‖2γ(t) dt

is the action of the path γ.
A critical geodesic is a critical path for the action E, that is, a solution to the associated

Euler–Lagrange equations.
Definition 2.3. The exponential map exp : TB → B, where TB is the tangent bundle of

B, is
exp[c](h) = γ(1),

where γ : [0, 1] → B is the critical geodesic with γ̇(0) = h ∈ T[c]B.

3. A geometric Sobolev-type metric. In this section, we define a Riemannian metric on
the space of curves M ; this metric is invariant with respect to reparameterizations of the curve.
This metric will allow us to compute geodesics in B, distances between contours, gradients
for active contours, etc.

For any fixed immersed curve c, let L(c) be the length of c, and, given any g : S1 → R2,
let

Dsg
.
=

g′

|c′|
be the derivative with respect to the arclength, and let

∫

c
g(s) ds

.
=

∫

S1
g(θ)|c′(θ)|dθ,

∫

c
g(s) ds

.
=

1

L(c)

∫

c
g(s) ds

denote the integral and the mean with respect to the arclength. We will often use the notation

g =

∫

c
g(s) ds

(not to be confused with the complex conjugate, which we will denote by g∗); we will call c
the centroid of c.

In the active contour literature, one defines an energy functional Eac : B → R that is
constructed so that the minimal energy contour [c] ∈ B represents the boundary of an object
of interest in an image. Typically, a gradient descent procedure is used to optimize Eac. To
define a gradient, one needs a Riemannian metric that is often tacitly assumed to be

(7) 〈h, k〉H0
.
=

∫

c
h(s) · k(s) ds,
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where s is the arclength parameter of c.3 (We omit the dependency of the metric on c for ease
of notation.) However, it is shown in [33] that in this metric the distance between any two
curves in B is zero. Therefore, in [49], we considered the following geometric Sobolev-type
metric:

(8) 〈h, k〉H̃1
.
= h · k + λL(c)

∫

c
Dsh ·Dsk ds,

where λ > 0 is a (constant) weight.4 This metric H̃1 was shown to yield favorable properties
for active contours (i.e., gradient descent of Eac) [51, 50, 52]. Moreover, this metric defines
a well-behaved Riemannian geometry, in that the distance between different curves is posi-
tive. However, while having some of the appropriate properties for our applications, it is not
particularly easy to compute geodesics in this metric. Moreover, the shape space obtained
by coupling the immersed curves with this metric is not decomposable into components that
are natural for visual tracking applications in computer vision. Therefore, we propose in the
remainder of this paper a new variant which was constructed deliberately for its favorable
properties in such applications.

3.1. A new Sobolev-type metric. We recall that the Gâteaux derivative of a function
f : M → Rk is defined by

Df(c;h)
.
=

d

dt
f(c+ th)

∣∣∣∣
t=0

= lim
t→0

f(c+ th)− f(c)

t
.

The Gâteaux derivatives of the centroid and of the length are

D(c)(c;h) =

∫

c
p(h) ds,

DL(c)(c;h) = −
∫

c
h ·D2

scds,

where
p(h)

.
= h− (h ·Dsc)Dsc− (h ·D2

sc)(c − c).

To define the new metric H, we first define the following decomposition for c ∈ M and
h ∈ TcM :

(9) h = ht + hl(c− c) + L(c)hd,

where ht is the component of h that changes the centroid of c, hl(c− c) is the component
of h that changes the scale (length) of c, and hd is the component of h that deforms c. The

3Note that in this section we are considering “geometric metrics” of curves, where the derivations and
integrals are performed with respect to the arc parameter; these metrics are distinguished by using the letter
“H” in different forms. Later we will instead use the notation L2 for the standard Hilbert metric where
integration is performed in the parametric variable, as usual.

4More classical Sobolev-type metrics for active contours were also presented in [10, 9, 51, 52]. An overview
of Sobolev-type metrics, methods, and mathematical results was presented in [35]; in section 4.3 of [35] it is
shown that, for a large class of Sobolev metrics, critical geodesics exist for short time and smooth initial data.
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components ht and hl of h are defined by

ht = D(c)(c;h) =

∫

c
p(h) ds ∈ R2,(10)

hl = D(logL(c))(c;h) = −
∫

c
h ·D2

scds ∈ R,(11)

hd =
1

L(c)
[h− ht − hl(c− c)].(12)

The component hd deforms the curve without scaling or translating, since

D(L(c))(c;hd) = 0, Dc(c;hd) = 0.

Definition 3.1. If h, k ∈ TcM are decomposed as above, then we define the Riemannian
metric H as

(13) 〈h, k〉H
.
= ht · kt + λlh

lkl + λdL(c)
2
∫

c
Dsh

d ·Dsk
d ds,

where the first two products are the Euclidean dot products, the last term is a normalized
geometric Sobolev metric, and λl,λd > 0 are (constant) weights.

Note that in the notation 〈h, k〉H we have omitted the dependency of the scalar product
on c for ease of notation. Note also that the third term of the metric may be rewritten directly
as a function of h ∈ TcM by using the identity

(14) L(c)2
∫

c
Dsh

d ·Dsk
d ds =

∫

c
Dsh ·Dsk ds−

∫

c
Dsh ·Dscds

∫

c
Dsc ·Dsk ds.

This new metric enjoys the following properties:
1. Centroid translations, scale changes, and deformations of the curve are orthogonal.

Moreover, the space of curves can be decomposed into a product space consisting of
three components as shown in Theorem 3.4.

2. Sobolev-type metrics favor smooth but otherwise unrestricted infinite-dimensional de-
formations [51], and they have a coarse-to-fine evolution behavior [52]. For this reason,
the old metric H̃1 has proven useful in framewise object detection/image segmentation
for visual tracking.
The new metric H is indeed metrically equivalent to the old metric H̃1.
Theorem 3.2.

a1
L(c)

1 + L(c)
‖h‖H ≤ ‖h‖H̃1 ≤ a2(1 + L(c)) ‖h‖H,

where 0 < a1 < a2 are constants depending on λ,λl,λd. (The proof is in section A.1.)
Therefore the new metric H inherits the favorable properties of the old metric H̃1 for
shape optimization tasks.

3. As was the case for the old metric H̃1, there is a fast and easy way to compute
gradients of commonly used energies with respect to the new metric H. The method
will be presented in Proposition 4.6.
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A NEW GEOMETRIC METRIC IN THE SPACE OF CURVES 117

4. Geodesics in this new metric (i.e., the optimization problem in (3)) can be numerically
computed efficiently. The method is explained in the next section.

For all these reasons, this new metric seems a state of the art choice for addressing prob-
lems in shape theory when the shape of interest can be represented as a curve: indeed, it
entails a sound mathematical model that can address problems in shape analysis and shape
optimization and any desired combination of the two.

3.2. Space decomposition. We will find it useful to define a submanifold Md of M .
Definition 3.3. Let

(15) Md = {c ∈ M : L(c) = 1, c = 0},

which is the space of all smooth immersed curves with the unit length and with the centroid
at the origin. This is a smooth submanifold of M (the proof follows from a corollary of the
Nash–Moser theorem; see [19]). Its tangent space at c̃ ∈ M is

(16) Tc̃Md =

{
h ∈ Tc̃M |

∫

c̃
(D2

s c̃) · hds = 0,

∫

c̃
p(h) ds = 0

}
.

We associate the Euclidean metric to Rn ×R and the metric

(17) 〈h, k〉Md =

∫

c̃
Dsh ·Dsk ds

with Md. This metric is the restriction of the metric H to Md. The metric H is associated
with an isometry between the space of curves M and the space R2 × R×Md.

Theorem 3.4. Let λl = λd = 1 (in (3.1)) for simplicity. We define a map and its inverse
by

c ∈ M ,→
(
v = c , l = logL(c) , c̃ =

c− c

L(c)

)
∈ R2 ×R×Md,(18)

(v, l, c̃) ∈ R2 × R×Md ,→ v + elc̃ ∈ M.(19)

This map is an isometry. (The proof is in section A.2.)
To the best of our knowledge, the metric H is the first example of a Sobolev-type metric

of immersed curves to exhibit this useful decomposition of the entire space M . Other known
metrics would provide a decomposition only of the infinitesimal motions h, i.e., a decomposi-
tion of the tangent space TcM rather than the space M itself. This decomposition, moreover,
greatly simplifies the proof of some of the mathematical results in the following sections.

3.3. Computing geodesics and the exponential map. Let

C : S1 × [0, 1] → R2, (θ, t) ,→ C(θ, t)

denote a time-varying family of closed curves (i.e., a homotopy) corresponding to a path
γ : [0, 1] → M , i.e., C(θ, t) = γ(t)(θ). We will write either ∂tC or Ċ to denote the time
derivative of C. We have that

(20) ‖∂tC‖2H = |∂tC|2 + λl(∂t(logL(C)))2 + λdL(c)
2
∫

C
|Ds(∂tC)d|2 ds.
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Following (6), let

E(C)
.
=

∫ 1

0
‖∂tC‖2H dt

be the action of the homotopy C. Using the above fact and some manipulations, one can
show that geodesics in this metric are invariant to scale and translations.

Proposition 3.5 (invariance of the action E). Let c0, c1 ∈ M , and let

c̃1 = v + eρ(c1 − c1) + c1

be a scaling and translation of c1. Suppose that C is a homotopy connecting c0 to c1, and let

C̃ = tv + etρ(C − C) + C

be a homotopy connecting c0 to c̃1; then

E(C̃) = E(C) + const,

where the “constant term” depends only on the end curves c0, c1 and v, ρ. As a corollary, C
is a geodesic connecting c0 to c1 if and only if C̃ is a geodesic connecting c0 to c̃1.

This result can be seen as a corollary of Theorem 3.4.
The above is also related to the following conservation laws.
Proposition 3.6 (momenta). Suppose that C is a geodesic; then the following quantities are

conserved:
• [translation] ∂tC is constant;
• [scaling] ∂t(logL(C)) is constant;
• [rotation] the angular momentum (that may be expressed in two equal ways)

(21)

∫

C
(ADsC) · (∂tDsC) ds =

∫

C
(ADsC) · (Ds∂tC) ds

is constant for any antisymmetric matrix A;
• [reparameterization] (DsC) · (D2

s∂tC) is constant in t for any fixed θ ∈ S1.
(The proof is in section A.3.)

This, in particular, means that, along a geodesic C connecting c0 to c1,

C = (1− t)c0 + tc1,(22)

logL(C) = (1− t) logL(c0) + t logL(c1).(23)

The previous results imply that to compute a minimal geodesic in M between c0 and c1
we apply the following procedure:

1. define

c̃0
.
=

c0 − c0
L(c0)

, c̃1
.
=

c1 − c1
L(c1)

;

2. compute a geodesic C̃ between c̃0 and c̃1 in the space Md;
3. rebuild the geodesic in M :

C(t, ·) = L1−t(c0)L
t(c1)C̃(t, ·) + (1− t)c0 + tc1.
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3.3.1. Representing smooth curves using the square root lifting. We have therefore
reduced the problem of computing geodesics in M to computing geodesics in the space Md of
unit length curves with the centroid at the origin. To this end, we will identify the plane R2

with the complex numbers C and consider curves as smooth maps c : R → C that are periodic
of period 1.

Given two smooth functions e, f : R → R, we define the map Φ introduced by Younes et
al. in [60, 61] by

(24) c(θ) = Φ(e, f)(θ)
.
= c(0) +

1

2

∫ θ

0
(e+ if)2(ξ) dξ,

where i denotes the imaginary unit; this map uniquely identifies a curve up to the choice of
the base point c(0) or, equivalently, up to the choice of the centroid c.

Note that for c = Φ(e, f) to be a closed curve we must have that

(25) 0 = c(1) − c(0) =
1

2

∫ 1

0
(e+ if)2(θ) dθ =

1

2

∫ 1

0
[e2(θ)− f2(θ) + 2ie(θ)f(θ)] dθ,

and for the curve to be of unit length we must have that

(26) 1 =

∫ 1

0
|ċ(θ)|dθ =

1

2

∫ 1

0
(e2(θ) + f2(θ)) dθ.

The conditions (25) and (26) imply that the pair (e, f) belongs to

(27) St(2, C∞) =
{
(e, f) ∈ C∞ × C∞ ∣∣ ‖e‖L2 = ‖f‖L2 = 1, 〈e, f〉L2 = 0

}
,

where the above L2 norms and inner product are the standard ones on L2([0, 1]). St(2, C∞)
is known as a Stiefel manifold. It is a Riemannian manifold when we use the metric induced
from the scalar product L2 × L2 on the frames (e, f).

Vice versa, let c be a closed unit length immersed smooth curve. We express c′ in polar
coordinates as

c′(θ) = r(θ)(cosϕ(θ) + i sinϕ(θ)).

We can then define an inverse of Φ (called the square-root lifting) by setting

(28) e(θ) + if(θ) = Φ−1(c)(θ) =
√

2r(θ)

(
cos

ϕ(θ)

2
+ i sin

ϕ(θ)

2

)
.

Note that (e, f) and (−e,−f) are the only two inverses of c.
We identify inside St(2, C∞) an open subset St0 of all smooth frames (e, f) that represent

the curves c ∈ Md: then Φ : St0 → Md is a smooth two-fold covering. It is shown in [61] that
Φ is a Riemannian isometry from St0 to Md endowed with a Sobolev-type metric.

Theorem 3.7 (see Theorem 2.2 in [61]). Let c̃ ∈ Md, and let h ∈ Tc̃Md (see (16)) and
(e, f) ∈ St0, (δe, δf) ∈ T(e,f)St

0 be the corresponding Stiefel representations, i.e.,

DΦ(e, f ; δe, δf) = h.
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Then ∫

c̃
|Dsh|2 ds = 2

∫ 1

0
(δe)2 + (δf)2 dθ.

To exploit this theorem, we associate with Md the (restriction of) the Sobolev-type metric∫
c̃ |Dsh|2 ds; then Φ maps isometrically the (restriction of) the metric L2 × L2 in St0 to the
chosen metric on Md. So this result couples perfectly with the isometry shown in Theorem 3.4.

3.3.2. Completing St(2, C∞) to St(2,L2). The space St(2, C∞) is not a complete
smooth Riemannian manifold; its metric completion is the space St(2,L2) of all orthonormal
frames (e, f) of two generic vectors e, f ∈ L2 = L2([0, 1]). St(2,L2) has many interesting
properties:

• St(2,L2) is a smooth embedded submanifold of L2 × L2.
• St(2,L2) is a complete smooth Riemannian manifold modeled on a Hilbert space. This

implies that the exponential map is well defined. We will show in the next section
that the exponential map can be written in closed form and computed efficiently. (The
formula proves that any two given pairs (e0, f0) and (e1, f1) can be connected by a
critical geodesic; that is, the exponential map is surjective.)

• Completeness is also an important hypothesis in any mathematical proof that would
aim to prove that an optimization method is well posed.

• A frame (e, f) ∈ St(2,L2) can be mapped to a closed (possibly nonsmooth) curve
using the map Φ; but the map is not a two-fold covering; that is, a curve has many
representations in St(2,L2).

• Vice versa, any closed curve c that is absolutely continuous (that is, c′ exists as an
integrable function) can be represented by a pair (e, f) ∈ St(2,L2).

For these reasons, we will consider St(2,L2) instead of St(2, C∞) in the rest of this paper.

3.3.3. Computing critical geodesics. Due to the above theorems and remarks, we now
present the calculus of geodesics in St(2,L2).

Classically, the Stiefel manifold St(p,Rn) is defined as the set of all frames composed
of p orthonormal vectors in Rn (with 1 ≤ p ≤ n); those frames are represented as n × p
matrices. Geodesics in Stiefel manifolds St(p,Rn) are known to have closed form solutions as
demonstrated by Edelman, Arias, and Smith [15].5

Proposition 3.8 (exponential map in St(p,Rn)). Let Y : [0, 1] → St(p,Rn) be a path, and
suppose that St(p,Rn) is endowed with the Euclidean metric, i.e.,

〈A,B〉 = tr(ATB);

then the geodesic equation is

(29) Ÿ + Y (Ẏ T Ẏ ) = 0.

The solution is

(30) (Y (t)eAt, Ẏ (t)eAt) = (Y (0), Ẏ (0)) exp t

(
A −S
Id A

)
,

5Edelman, Arias, and Smith [15] credit a personal communication by R. A. Lippert for the final closed form
formula (30).
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where A = Y T (0)Ẏ (0), S = Ẏ T (0)Ẏ (0), and Id is the p× p identity matrix.
The proof and discussion of these results is in section 2.2.2 of [15].
The solution in (30), while written for St(p,Rn), extends to St(2,L2). Indeed, (30) shows

that the columns of Y (t), Ẏ (t) remain in the space spanned by the columns of Y (0), Ẏ (0) for
all t.

Proposition 3.9 (exponential map in St(2,L2)). Let (e, f) : [0, 1] → St(2,L2) be a geodesic
path such that

(e(0), f(0)) = (e∗, f∗) ∈ St(2,L2)

and

(ė(0), ḟ(0)) = (δe, δf) ∈ T(e∗,f∗)St(2,L2).

Define an orthonormal set 6

(31) B = {e∗, f∗, ẽ, f̃} ⊂ span({e∗, f∗, δe, δf})

according to the usual L2 metric. Then the geodesic in St(2,L2) is given by

e(t) = Y 1
1 (t)e

∗ + Y 2
1 (t)f

∗ + Y 3
1 (t)ẽ+ Y 4

1 (t)f̃ ,

f(t) = Y 1
2 (t)e

∗ + Y 2
2 (t)f

∗ + Y 3
2 (t)ẽ+ Y 4

2 (t)f̃ ,

where Y i
j denotes the ith component of Yj ∈ R4, Y : [0, 1] → St(2,R4) is the geodesic in

St(2,R4) that satisfies

Y (0) = ((1, 0, 0, 0)T , (0, 1, 0, 0)T ),(32)

Ẏ (0) = (a, b) ∈ TY (0)St(2,R4),(33)

and (a, b) are the representations of δe, δf relative to B.
The geodesic γ : [0, 1] → Md can then be recovered from the geodesic in St(2,L2) via the

isometry Φ; but note that even if the initial curve is smooth and immersed and the vector
field is smooth, it is not guaranteed that the curve will be immersed for all t (cf. section 3.3.2
and the examples in [61]).

3.3.4. Computing minimal geodesics. The formula (30) gives the geodesic as a func-
tion of the initial position and direction; this is the exponential map. However, to compute
geodesics between two curves (the so-called logarithmic map), it is necessary to have a formula
for Y in terms of the boundary conditions Y (0) and Y (1). We are not aware of such an explicit
formula, and therefore we use an iterative algorithm that computes the initial direction Ẏ (0)
of the geodesic Y such that Y (0) = Y0 and Y (1) = Y1.

As in the previous proposition, we can reduce the computation to St(2,R4): indeed, we
represent the end curves as two frames (e0, f0) and (e1, f1), respectively, and then define an
orthonormal set

B = {e0, f0, ẽ, f̃} ⊂ span({e0, f0, e1, f1}).

6If {e∗, f∗, δe, δf} do not span a four-dimensional (4D) space, then f̃ may be chosen arbitrarily.
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In this coordinate system, the end curves are represented as Y0, Y1 ∈ R4×2, and Y0 is given by
(32). All possible tangent vectors at Y0 are

Ẏ (0) = ((0,α, v1, v3)
T , (−α, 0, v2, v4)

T )

with α, v1, v2, v3, v4 ∈ R, in conformity with the representation in (2.6) of [15].
To compute the geodesic, we minimize the energy E : R5 → R+,

(34) E(α, v1, v2, v3, v4) = |Y (1) − Y1|2,
where Y (1) is given according to (30),

Y (1) = (Y (0), Ẏ (0)) exp

(
A −S
Id2×2 A

)
Id4×2e

−A,

A =

(
0 −α
α 0

)
, S =

(
α2 + v21 + v23 v1v2 + v3v4
v1v2 + v3v4 α2 + v22 + v24

)
,

where Id4×2 = ((1, 0, 0, 0)T , (0, 1, 0, 0)T ). Note that the energy E is not convex.
We minimize the energy in (34) by standard gradient descent in R5, initializing the descent

with (α, v1, v2, v3, v4) = (0, 0, 0, 0, 0). The gradient is computed as follows.
Proposition 3.10. The partial derivatives of the energy E in (34) are given by

∂∗E(α, v1, v2, v3, v4) = (Y (1) − Y1) ·
[
(04×2, ∂∗Ẏ (0)) exp (N) Id4×2 e

−A

+ (Y (0), Ẏ (0))

∫ 1

0
exp (tN)∂∗N exp ((1 − t)N) dt Id4×2e

−A

+ (Y (0), Ẏ (0)) exp (N) Id4×2 e
−A∂∗A

]
,(35)

where ∗ = α, v1, v2, v3, v4,

N =

(
A −S
Id2×2 A

)
,

the partials of A are

∂αA =

(
0 −1
1 0

)
, and ∂viA = 02×2 for i = 1, 2, 3, 4,

and the partials of S are

∂αS = 2αId2×2, ∂v1S =

(
2v1 v2
v2 0

)
, ∂v2S =

(
0 v1
v1 2v2

)
,

∂v3S =

(
2v3 v4
v4 0

)
, ∂v3S =

(
0 v3
v3 2v4

)
.

Proof. This is a standard calculation based on the matrix differentiation formula

D(expX)(X;Z) =

∫ 1

0
exp (tX)Z exp ((1 − t)X) dt,

which can be found in [31].7 Note that when X and Z commute, then D(expX)(X;Z) =

7A more general result for infinite-dimensional Lie manifolds has been proven in [18].
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exp (X)Z.
The derivative of the matrix exponential can be computed efficiently using a technique

resembling the fast Fourier transform (see Appendix B for details). The geodesic connecting
Y0 to Y1 is then obtained by setting Y (0) = Y0 and Ẏ (0) = ((0,α∗, v∗1 , v

∗
3)

T , (−α∗, 0, v∗2 , v
∗
4)

T ),
where (α∗, v∗1 , v

∗
2 , v

∗
3 , v

∗
4) is the minimum point of (34).

3.4. Geodesics in the space of geometric curves, B. Up to this point, we have specified
how to compute geodesics and the exponential map in M according to the metric H; however,
we are interested in these operations in the geometric space B. To be mathematically precise,
in this section we will consider M to be the space of all freely immersed smooth curves.

We first define two objects of interest. We define the vertical space as

(36) VcM = {h ∈ TcM : h = βc′, β : S1 → R}.

This is the set of infinitesimal deformations of c that do not change the geometry of the curve
c but only its parameterization. We then define the horizontal space as

(37) WcM
.
= (VcM)⊥ = {h ∈ TcM : 〈h, k〉H = 0 ∀k ∈ VcM}.

We use the horizontal space WcM as a model of the tangent space T[c]B.
Geodesics in B (with the metric induced from M) correspond to geodesics in M , provided

they are horizontal, i.e., γ̇(t) ∈ Wγ(t)M for all t. Equivalently, it is enough that γ̇(1) ∈ Wγ(1)M
and γ is a geodesic in M for γ to be a geodesic in B. We now give the condition to determine
whether γ̇(1) ∈ Wγ(1)M , which can be found in [61]. As a first step we consider φ ∈ Diff(S1)
such that φ(0) = 0: then, by direct computation,

Φ(e, f)(φ−1(θ)) = c(0) +
1

2

∫ φ−1(θ)

0
(e+ if)2(ξ) dξ

= c(0) +
1

2

∫ θ

0
(e+ if)2(φ(ξ))φ′(ξ) dξ = Φ

(√
φ′ (e ◦ φ),

√
φ′ (f ◦ φ)

)
(θ),

where φ′ = dφ/dθ is the derivative of φ. Therefore, the action of reparameterization on a
point (e, f) ∈ St(2, C∞) is

(e, f) ,→
√

φ′ (e ◦ φ, f ◦ φ),

and the differential of the action above evaluated at the identity in the direction β : S1 → R
is (

1

2
β′e+ βe′,

1

2
β′f + βf ′

)
.

The collection of all such differentials above for all β is the vertical space at (e, f). For
(δe, δf) ∈ T(e,f)St(2, C

∞) to be in the horizontal space, it must be orthogonal to all vertical
perturbations:

〈
δe,

1

2
β′e+ βe′

〉

L2

+

〈
δf ,

1

2
β′f + βf ′

〉

L2

=
1

2

〈
β, e′δe − e(δe)′

〉
L2+

1

2

〈
β, f ′δf − f(δf)′

〉
L2 = 0
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for all β, that is,

(38) Ω(e, δe) + Ω(f, δf) = 0,

where

(39) Ω(a, b)
.
= ab′ − ba′.

To compute a geodesic between [c0], [c1] ∈ B, we use the following algorithm.
Algorithm 3.11 (computing geodesics in St(2, C∞)/Diff(S1)). Let φ0 ∈ Diff(S1) be an initial

reparameterization of the end curve c1 in its Stiefel representation (one possible initialization
is given in Remark 3.12). Define a sequence φk ∈ Diff(S1) iterating the following steps:

1. Compute the geodesic (eφk
(t), fφk

(t)), t ∈ [0, 1], in St(2, C∞) between (e0, f0) and√
φ̇k(e1 ◦ φk, f1 ◦ φk).

2. Compute a β : S1 → R so that defining

(40) (ve, vf ) =

(
1

2
β′eφk

(1) + βe′φk
(1),

1

2
β′fφk

(1) + βf ′
φk
(1)

)

we have that (e′φk
(1) − ve, f ′

φk
(1)− vf ) is horizontal; this β must solve

Ω(eφk
(1), e′φk

(1) − ve) + Ω(fφk
(1), f ′

φk
(1)− vf ) = 0,

that is,

(41) Ω(eφk
(1), ve) + Ω(fφk

(1), vf ) = Ω(eφk
(1), e′φk

(1)) + Ω(fφk
(1), f ′

φk
(1)).

Note that (41) simplifies to

(42)
1

2
β′′(e2 + f2) + β′(ee′ + ff ′)− β

(
(e′)2 − ee′′ + (f ′)2 − ff ′′

)
= Ω(e, ė) +Ω(f, ḟ),

where we have used a simplified notation e = eφk
(1), f = fφk

(1), ė = ėφk
(1), and

ḟ = ḟφk
(1). Note that the discretization of (42) is given in Appendix D.

3. Set φk+1 = φk − εβ, where ε > 0 is small.
Figure 1 illustrates this process.
Remark 3.12. The above algorithm is not guaranteed to converge to the global optimum

reparameterization φ∗ of the geodesic distance in St(2, C∞). In order to help avoid conver-
gence to a local minimum, we perform a direct search for the optimal base point rotation
φ0(θ) = θ + a, where a ∈ S1, before iterating the above steps.

The geodesic (eφk
(t), fφk

(t)), t ∈ [0, 1] (in St(2, C∞)), for large k will approximate the
geodesic in St(2, C∞)/Diff(S1), and hence Φ(eφk

(t), fφk
(t)), t ∈ [0, 1], approximates the geodesic

in B.
Figure 2 shows an example geodesic in B.
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A NEW GEOMETRIC METRIC IN THE SPACE OF CURVES 125

Figure 1. The dashed lines represent equivalence classes of curves (Oc is the orbit [c]), and Wc is the space
horizontal to c. To compute geodesics in B, we compute the geodesic in M between c0 and c1 ◦ φ (the staircase
path), project γ̇ to its vertical component (tangent to Oc1◦φ), move c1 to another representative determined by
the vertical component, and iterate the process until the vertical component becomes zero.

Figure 2. Example illustration of a geodesic in B. The geodesic is computed between the first (leftmost)
and the last red curve (time t = 0 and t = 1), and intermediate curves (interpolation) are shown in between.
The blue curves (t = 1 to t = 2) are the continuation of the geodesic (extrapolation) from the last red curve. It
can be seen that the extrapolation does not simply change the pose of the contour but also alters its shape (i.e.,
it “deforms”).

3.5. Parallel transport. In the next section we will discuss a dynamical model for tracking
deforming shapes. To this end, we recall this definition, which is standard in Riemannian
geometry.

Definition 3.13. Suppose that M is a Riemannian manifold. Given a path γ : [a, b] → M ,
the parallel transport

Pγ : Tγ(a)M → Tγ(b)M

along γ of the tangent vector h ∈ Tγ(a)M is defined as

Pγ(h) = V (b),

where the vector field V (t) ∈ Tγ(t)M is such that

{
∇γ̇(t)V (t) = 0 ∀t ∈ [a, b],

V (a) = h,

and ∇γ̇ is the covariant derivative along γ. The parallel transport is a linear isometry between
Tγ(a)M and Tγ(b)M .

The parallel transport in the finite-dimensional Stiefel manifolds St(p,Rn) is described
in section 2.2.3 of [15]. Given an n × p orthogonal matrix Y , a tangent vector ∆ at Y
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is represented as an n × p real matrix such that Y T∆ is skew symmetric. Given a curve
Y = Y (t) in St(p,Rn), the equation for the parallel transport of ∆ is

(43) ∆̇ = −Y (Ẏ T∆+∆T Ẏ )/2

by (2.16) in [15]. According to [15], no closed form solution is known for this equation, even
for the case when Y is a geodesic.

The equation for the parallel transport in St(2,L2) can be easily adapted from the equa-
tion above. As for the case of geodesics, we can reduce the problem of computing the parallel
transport in St(2,L2) along a geodesic to a computation in a finite-dimensional Stiefel mani-
fold. We first note the following proposition.

Proposition 3.14.
• Suppose that Y = Y (t) is a curve and that v is a vector that is orthogonal to all

columns in Y (t); then it is also orthogonal to all columns in ∆̇(t).
• If ∆ is a constant matrix and all its columns are orthogonal to all the columns of Y (t)

(for all t), then ∆ satisfies (43).
This proposition is stated for the case of St(p,Rn) but easily extends to St(p,L2). So we

obtain this simplified method to compute the parallel transport in St(2,L2).
Corollary 3.15. Suppose that (e(t), f(t)) is a geodesic in St(2,L2). Let B be the base used

in Proposition 3.9, and let Y (t) be the geodesic expressed in this base (note that Y (t) is a
geodesic in St(2,R4)). Suppose that (b(t), d(t)) is the parallel transport of (b(0), d(0)) along
(e(t), f(t)). We decompose both b(t) and d(t) into two components

b(t) = b̃(t) + b̂(t), d(t) = d̃(t) + d̂(t)

with b̃ and d̃ in the 4D space spanned by B and b̂, d̂ orthogonal to this space. From the previous
proposition and the uniqueness of solution of the linear first-order system of ODE (43), we
obtain that b̂, d̂ are constant; if we express b̃, d̃ as the two columns of a matrix ∆, using the
base B, then ∆ satisfies (43) in St(2,R4).

4. Filtering and prediction for deforming shapes.

4.1. Dynamical model. The geometry in the space of curves described in the previous
section gives the foundations for defining dynamical systems on curves. In this section, we show
how to construct the simplest possible nontrivial dynamical model. Later, in experiments, we
show the usefulness of the model. Defining more complex dynamical models is beyond the
scope of this paper, which is to develop the tools for which any dynamical model can be
defined.

We start by considering a simple “constant velocity plus perturbation” model for a point
moving in Rn:

µk = µk−1 + νk−1,

νk = νk−1 + ηk−1,(44)

where the state is xk = (µk, νk), ηk−1 is a noise process, and µ represents the position and ν
the velocity. When {ηk} is a white Gaussian process, this is a discrete-time Brownian motion,
or first-order random walk.
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We assume that we are given noisy measurements of the first component of the state, i.e.,

(45) yk = µk + ξk,

where ξk is the measurement noise.
We now generalize the above dynamical model from Rn to the case of curves. Denote with

µk ∈ B the deforming contour and with νk ∈ TµkB its velocity at time k. The state at time
k is xk = (µk, νk). In the Riemannian manifold B we may define the operation analogous
to addition, i.e., µk + νk, by using the exponential map. Also, since νk and νk−1 are not in
the same space (i.e., νk ∈ TµkB and νk−1 ∈ Tµk−1B), the expression νk = νk−1 + ηk−1 is not
defined, and we must transport νk−1 to TµkB via parallel transport.

The “constant velocity plus perturbation” model in the space of curves becomes the fol-
lowing definition.

Definition 4.1 (discrete Brownian motion of curves).

µk = expµk−1
(νk−1),(46)

νk = Pµk−1,µk(νk−1 + ηk−1),(47)

where xk = (µk, νk) ∈ TB is the state, ηk−1 ∈ Tµk−1B is a noise process, and Pµk−1,µk denotes
the parallel transport along the geodesic connecting µk−1 to µk. Note that the noise process
lives in a linear space, where it is easy to define a Gaussian distribution.

Since the parallel transport is a linear isometry, (47) can be replaced by

(48) νk = Pµk−1,µk(νk−1) + ηk−1

simply by choosing ηk−1 ∈ TµkB directly.
The two models (46), (47) and (46), (48) have equivalent descriptive power. The latter

model is, however, easier to implement numerically, since the parallel transport Pµk−1,µk(νk−1)
is trivial to compute: it is the parallel transport along a geodesic of its own tangent vector, so
it is obtained as γ̇(1), where γ is the geodesic between γ(0) = µk−1 and γ(1) = µk; and γ is
exactly the geodesic computed in (46).

We will assume that noisy samples of the contour µk are available at each time k, for
instance, from a segmentation scheme from the active contour literature.

Definition 4.2 (measurement model).

(49) yk = expµk
(ξk),

where ξk ∈ TµkB is the measurement noise.
The measurement is a noisy version of the first component of the state, µk. Again, notice

that ξk lives on a linear space, where a Gaussian distribution can be defined easily.

4.2. Filtering deforming shapes. In this section, the goal is to devise a recursive (causal)
procedure to estimate the state of the dynamical system, (µk, νk), i.e., the shape and velocity
of a moving object, introduced in the previous section, from measurements yk obtained from
the time-varying image, Ik. We start by reviewing the classical linear finite-dimensional
(Luenberger) observer in Rn [28] and then generalize it to the space of curves.
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An observer in Rn for the dynamical system (44) and measurement model (45) itself is a
dynamical model with state (µ̂, ν̂) that evolves according to two pairs of equations, the state
prediction

µ̂k|k−1 = µ̂k−1|k−1 + ν̂k−1|k−1,(50)

ν̂k|k−1 = ν̂k−1|k−1(51)

and the update

µ̂k|k = µ̂k|k−1 +Kµ(yk − µ̂k|k−1),(52)

ν̂k|k = ν̂k|k−1 +Kν(yk − µ̂k|k−1).(53)

Note how the Luenberger observer structure involves a direct effect of the measurement yk on
the state through two components Kµ,Kν ≥ 0, which are called the gains.8 The gains can
be chosen to satisfy some optimality criterion. The weakest requirement, for time-invariant
models, is that the error

ek = xk − x̂k|k

between the state estimate and the true state approaches zero as k → +∞.
The analogous observer in the case of the dynamical system on the space of curves may

take the following form.
Definition 4.3 (curve observer). The prediction is

µ̂k|k−1 = expµ̂k−1|k−1
(ν̂k−1|k−1),(54)

ν̂k|k−1 = Pµ̂k−1|k−1,µ̂k|k−1
(ν̂k−1|k−1),(55)

where ν̂k|k−1 ∈ Tµ̂k|k−1
B, and Pµ̂k−1|k−1,µ̂k|k−1

denotes the parallel transport along the geodesic
from µ̂k−1|k−1 to µ̂k|k−1; again Pµ̂k−1|k−1,µ̂k|k−1

(ν̂k−1|k−1) is trivial to compute.
The general form of the update equations may be expressed as

µ̂k|k = expµ̂k|k−1
(Kµ log(µ̂k|k−1, yk)),(56)

ν̂k|k = Pµ̂k|k−1,µ̂k|k(ν̂k|k−1 +Kν log(µ̂k|k−1, yk)).(57)

To better understand the above equations (and give meaning to log), we identify the update
geodesic ζk such that

ζk(0) = µ̂k|k−1,

ζ̇k(0) = log(µ̂k|k−1, yk),

ζk(1) = yk,

ζk(Kµ) = µ̂k|k,

8In general, the gains can be matrices such as in the Kalman filter, where these matrices are chosen to
minimize the expected square error between the state and estimated state when the noise process is chosen
to be Gaussian. We choose the simpler case of an isotropic gain that reduces to a scalar, since such a case
generalizes easily in the infinite-dimensional case, which we examine next.
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A NEW GEOMETRIC METRIC IN THE SPACE OF CURVES 129

where ζk in the interval [0, 1] is a minimal geodesic. Since Pµ̂k|k−1,µ̂k|k is the parallel transport
along this geodesic, (57) can be rewritten as

(58) ν̂k|k = Pµ̂k|k−1,µ̂k|k(ν̂k|k−1) +Kν ζ̇k(Kµ).

In any case, the update requires parallel transport of a tangent vector that is not tangent to
the geodesic path to be transported along, which entails solving a differential equation numeri-
cally. While this is feasible (and not particularly burdensome, as explained in Corollary 3.15),
we will consider in this paper only the simplified observer structure where the correction occurs
at the velocity level, and therefore Kµ = 0. Then the update takes the form

µ̂k|k = µ̂k|k−1,(59)

ν̂k|k = ν̂k|k−1 +Kν log(µ̂k|k−1, yk).(60)

The constant Kν > 0 should be chosen to trade off asymptotic tracking error with con-
vergence speed. Ideally, it should be chosen within bounds that guarantee at least stability of
the filtering or asymptotic decay of prediction error. In practice, stability can be guaranteed
only under additional assumptions on the uncertainty process {η}. In this paper we do not
examine this issue.

Remark 4.4. The contour of the state µ represents the boundary of the object of interest
in the image, which is typically a simple closed curve. As we remarked in section 3.3.2,
for general ν ∈ TµB, it is not guaranteed that expµ (ν) is simple (that is, immersed and
non–self-intersecting). However, we have generally observed in the experiments (section 4.4)
that, since ν̂k|k is not chosen arbitrarily (i.e., it is determined by measurements yk, which are
constructed to be simple (see section 4.3)), µ̂k|k−1 is generally simple. Moreover, since we are
performing only a one-step prediction (54), which corresponds to following the geodesic for a
short time step, the curve generally remains simple. For more than a one-step prediction, a
more elaborate model is needed to guarantee that the curve remains simple.

Remark 4.5. We discuss the computational complexity of the above observer for numerical
computations. Let the curve µk be discretized byN sample points. Computing the exponential
map (54) requires first converting to its Stiefel representation (28), computing the basis B (31),
and then applying (30). The parallel transport (55) is automatically computed by the previous
formula. Therefore, computing (54), (55) has complexity O(N). Computing log in (60) is more
expensive, since it requires an iterative procedure (Algorithm 3.11). Each iteration requires
the solution of a tridiagonal system (Appendix D), and this can be done in O(N). Thus,
the complexity for (60) is O(N ∗ P ), where P is the number of iterations in Algorithm 3.11.
Hence, the overall complexity of the curve observer at each time k is O(N ∗ P ).

4.3. Obtaining pseudomeasurements via image segmentation. In this section, we de-
scribe the procedure to obtain the pseudomeasurements yk of the state contour µk using the
image sequence Ik : Ω ⊂ R2 → R+. We call these pseudomeasurements because what is
measured is the irradiant energy impinging on a small area element on the image plane, i.e.,
the intensity of a pixel. However, for the purpose of this section, we assume that an inter-
mediate process is available that converts these measurements into an ideal, closed, planar
simple curve. In practice, implementing such an intermediate process may be rather difficult
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when not impossible, depending on the photometric, geometric, and dynamic characteristics
of the scene. This issue goes to the heart of much of low-level vision and is well beyond the
scope of this paper. Therefore, we will take this assumption with the due caveats, and for the
rest of this section we will assume that such pseudomeasurements yk are available and, for
simplicity, call them “measurements.” They are the boundary of two disjoint regions obtained
by partitioning the image domain Ω into two regions that have distinctive local statistics
(e.g., intensity histograms, spatial and temporal regularized derivatives, etc.). In order to
find the partitioning boundary, we minimize an energy Eac(·; I) : B → R that depends on an
image, I, and is defined on the space of curves, B. The goal of this section is not to show how
one constructs such an energy but rather, given any energy, to show how to optimize it via a
steepest descent algorithm that is intrinsic to the Riemannian geometry of the space B under
the metric H introduced in section 3. This is different than the Sobolev metric presented in
[51, 52], so we present the computation of the gradient of an energy Eac with respect to the
metric H. Indeed, the next proposition shows how one calculates the H gradient from the
usual L2 gradient of an energy.

Proposition 4.6. Let Eac : M → R, and suppose that f
.
= ∇H0Eac(c) and g

.
= ∇HEac(c)

exist. Then g = gt + gl(c− c) + L(c)gd is related to f by the following:

gt = f,(61)

gl =
1

λl
f · (c− c),(62)

gd =
1

λdL(c)

(
f · (c− c)(c− c)− ŵ + k

)
,(63)

where

A
def
= (Dsc)(c− c)T , f̂(σ)

def
=

∫ σ

0
f(s) ds − σf,

v
def
=

∫

c
f̂ +Af ds, ŵ(σ)

def
=

∫ σ

0
f̂(s) +Af ds − σv,

k
def
=

∫

c
ŵ +AT (f̂ +Af − v) ds

and the above parameterizations are in arc parameter.
Proof. See Appendix C.
For the experiments in section 4.4, in order to obtain measurements, we will minimize an

energy of the form

(64) Eac(c; I) =

∫

R
F (x; I) dx,

where R is the region enclosed by the simple curve c, F : Ω → R incorporates information
from the image I, and dx is the area measure in Ω. Such energies have been introduced in a
number of papers in the active contour literature (see, e.g., [7, 59, 42, 62]). It can be shown
that the H0 gradient of (64) is

(65) ∇H0Eac(c; I) = FN ,
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where N is the outward unit normal to the curve c. The H gradient of Eac in (64) may be
computed from (65) using Proposition 4.6. Therefore, the measurement yk is obtained by
solving the following partial differential equation (PDE):

∂tC = −∇HEac(C; Ik),(66)

C(0, ·) = µ̂k|k−1,(67)

where C : R+ × S1 → R2. That is, the H gradient descent is run until convergence using the
predicted contour µ̂k|k−1 at time k as the initialization.

Although the techniques constructed in this paper are built for tracking a single object,
in order to solve the PDE (66) numerically, we use the level set method [40], which naturally
allows for topological changes of the underlying curve C. The use of level set methods is
beneficial even when the objects of interest do not exhibit topological changes, because a
coarse initialization can undergo several topological changes before converging to a simple
curve, which affords improved resistance to local minima. This is, of course, based on empirical
evidence, as theoretical guarantees for convergence to local minima are hard to come by for
the kind of functionals commonly used in image segmentation. When the method converges to
multiply connected curves, we choose the component corresponding to a simple curve that has
minimal energy according to (64) for the measurement yk. Instead of evolving the curve C,
the level set method evolves a Lipschitz function Ψ : R+ ×Ω → R such that Ψ(t, C(t, ·)) = 0;
i.e., the zero level set of Ψ is the curve C. The previous equation defines the evolution of Ψ
along the level set:

∂tΨ(t, x) = −∇Ψ(t, x) ·G(t, x) for x ∈ C(t,S1),

where G is an extension of −∇HEac in a narrowband of C(t, ·):

G(t, C(t, s)) = −∇HEac(C; Ik)(s) for s ∈ [0, L],(68)

∇Ψ(t, x) ·∇G(t, x) = 0 for x /∈ C(t,S1).(69)

The second equation above implies that the value of G at a point x /∈ C(t,S1) is equal to
G(t, C(t, s)), where C(t, s) is the point on C(t,S1) closest to x. Note that this is the case for
x with a small narrowband around C(t,S1). More details for the numerical implementation
can be found in [51].

4.4. Experiments. In this section we aim to illustrate the general qualitative behavior
of the dynamical model that we have constructed and the ensuing filter. Therefore, we have
chosen a very basic segmentation technique to obtain the measurements yk by performing
an active contour segmentation using the Chan–Vese model [7] and Sobolev active contours
[51, 52] with the initialization being the previous state prediction, µ̂k|k−1. At the initial time,
the state contour, µ̂0|0, is selected interactively and the state velocity ν̂0|0 is set to zero.
Furthermore, we have chosen the gain K = 0.2 unless specified otherwise. The red curve in
the figures indicates the state prediction contour µ̂k|k−1, the blue arrows indicate the state
prediction velocity ν̂k|k−1, and the green curves indicate the measurement yk, all at frame k.

In the first experiment (Figure 3), we track a circle that continuously deforms (by a
nonaffine deformation) into two joined blobs. The data is corrupted by a full occlusion in
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Figure 3. Tracking a synthetic deforming circle through a total occlusion. This experiment demonstrates
the need for the dynamical model that extrapolates shape. In the first few frames, where there is no occlusion, the
image segmentation (green) alone correctly follows the shape evolution. However, when the occlusion appears,
the image segmentation is uninformative, and the dynamical model extrapolates the shape (red) and velocity
(blue) of the contour (middle frames). A dynamical model with only affine motion [22] (top row) cannot
extrapolate the deformation. The infinite-dimensional model (proposed work), on the other hand, correctly
predicts the evolution towards a bilobate shape. Red: µ̂k|k−1; blue: ν̂k|k−1; and green: yk.

frames 6–11 (the sequence ranges from 1–13). In frame 1, we choose the contour initialization
to match the circle’s boundary. In the top row, we have used a dynamical model and filter
on the affine motion parameters of the object, as is typical in prior work [22]. In the bottom
row, we have used the proposed method, which defines a dynamical model and filters on the
space of curves. At the moment of occlusion (t = 6), we set the gain K = 0, in which case
the filter ignores the measurements yk and moves according to state dynamics for t ≥ 6 with
the initial velocity v̂6|6. When only affine dynamics are considered, the shape of the object
evolves towards an ellipse. The dynamical model on arbitrary deformations, on the other
hand, correctly extrapolates during the occlusion and eventually converges to the bilobate
shape.

In Figures 4 and 5, we track a deforming flatworm in the ocean. Figure 4 shows the
proposed filtering technique applied to the sequence. The experiment demonstrates that the
constant velocity plus perturbation model (whose trajectory is shown in red and blue arrows)
does a good job at predicting and extrapolating the boundary and motion of the object. In
Figure 4, we compare our proposed model to a simple frame-by-frame segmentation (e.g., no
filtering in time) [37] and a filtering strategy that filters and models only on the affine motion
[22]. As one can see from the figure, the proposed model yields a more accurate track than the
affine motion model. In contrast, the affine model predicts a contour that is far enough from
the desired local minimum that the measurement “leaks” into portions of the background
with similar intensity.

In Figure 6, we track a contracting heart chamber from magnetic resonance imaging (MRI)
and compare the results of frame-by-frame segmentation [37], tracking with an affine motion
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Figure 4. Tracking a flatworm (left to right, top to bottom) using the proposed filtering technique: the
red curve is µ̂k|k−1, the blue arrows are ν̂k|k−1, and the green curve is the measurement yk. This experiment
demonstrates the dynamics of the contour and deformation under the constant velocity plus perturbation model,
which correctly models the dynamics of the flatworm.

predictor/estimator [22], and tracking using the proposed prediction/estimation scheme on
both shape and motion. As can be seen, a better prediction by the proposed model leads
to more accurate measurements that prevent leaking (to a large extent) to the irrelevant
chamber. Note that the gradient descent of the image-based energy was run for the same
number of fixed iterations for all three tracking procedures.

5. Conclusion. We have introduced a new geometric metric in the space of closed planar
curves that decomposes the space into three intuitive components. This decomposition, we
have shown, has particular relevance in the tracking problem for computer vision. We have
introduced a filtering and prediction scheme on the infinite-dimensional space of shapes, de-
fined as simple, closed planar contours undergoing general diffeomorphisms. Previous work
has either attempted to “separate” the “motion” (a finite-dimensional group) from the “de-
formation” and defined observers for dynamical models on the finite-dimensional motion pa-
rameters, or it has restricted the set of allowable deformations to finitely parametrized classes,
for instance, obtained from manually obtained training data. The problem with the former
approach is that it fails to predict deformations; as an object undergoes an occlusion, the
tracker can extrapolate its affine motion but not its deformation. We have shown that pre-
dicting deformations allows us to significantly decrease prediction error. The problem with the
latter approach is that it requires having training data available for the classes of objects and
deformations that one wishes to track. While this is realistic for objects like humans walking,
it becomes prohibitive when one wants to consider more gaits (limping, running, hopping) or
more objects (flatworms, jellyfish, hurricanes), for which training data may not be available.

Deriving a dynamic observer on the space of curves entails the use of differential and
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Figure 5. Comparison between frame-by-frame segmentation, i.e., no dynamics [37] (left), dynamical model
only on the motion (scales and translation) [22] in the middle column, and dynamical model on both the motion
and deformation (proposed work, right column). In the left column, it can be seen that the predicted shape
fails to adapt to the newly deformed object; in the right column, where both the motion and deformation are
extrapolated, the object is predicted with far greater accuracy. Red: µ̂k|k−1; blue: ν̂k|k−1; and green: yk.
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Figure 6. Tracking a ventricle in a contracting heart from MRI. Left column: frame-by-frame segmentation
(no dynamics) [37]; middle column: dynamical model only on the motion (scales and translation) [22]; and right
column: dynamical model on both the motion and deformation (proposed work). In both the left and middle
columns, the contour leaks into an irrelevant chamber. On the right, because the deformation is predicted,
the contour is predicted with greater accuracy (although not perfect) and thus results in better measurements
(preventing leaking to a large extent). Red: µ̂k|k−1; blue: yk.
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Riemannian geometries and extends classical results in prediction and filtering theory. We
have illustrated the case of (first-order) random walk dynamics, but our approach can be easily
extended to any linear dynamics, for instance, autoregressive moving-average models of higher
order. This is made possible by the fact that the stochastic processes driving the dynamics
are defined on the space tangent to the state space, which is linear, and therefore standard
tools from systems theory can be applied, albeit with care because these linear spaces are still
infinite-dimensional.

While one may wish to bypass the significant mathematical burden by discretizing the
objects of interest at the outset, for instance, by using a piecewise linear contour, or a spline
or Bezier curve, this introduces difficulties later. In fact, the location of control points or
vertices can move while keeping the data unchanged, which results in an unobservable model,
and therefore causes spurious dynamics in the observer. Our approach avoids these represen-
tational issues by modeling the native objects—closed simple planar contours—directly in the
space where they belong, leaving the discretization to the last stage of computation, which
is the numerical integration of the PDEs implementing the observer. Our approach has been
demonstrated on real and synthetic sequences of deforming objects and shows improvement
over the state of the art choice.

Appendix A. Proofs. We first rewrite the metric H in a form that will be more convenient
for the following proofs. Let Pch be the projector linear operator

(70) Pch
def
= h− (Dsc)

∫

c
(h ·Dsc) ds.

Then the three terms of the metric H may be rewritten as

‖h‖2H-t =

∣∣∣∣
∫

p(h) ds

∣∣∣∣
2

= |Dc(c;h)|2,(71)

‖h‖2H-l =

∣∣∣∣
∫

c
Dsh ·Dscds

∣∣∣∣
2

= |D(log(L(c)))(c;h)|2 ,(72)

‖h‖2H-d = L(c)2
∫

c
|Dsh

d|2 ds

=

∫

c
|Pc(Dsh)|2 ds =

∫

c
|Dsh|2 ds−

(∫

c
Dsh ·Dscds

)2

,(73)

so that

‖h‖2H = ‖h‖2H-t + λl‖h‖2H-l + λd‖h‖2H-d.

A.1. Proof of Theorem 3.2. We now prove Theorem 3.2.
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Proof. Using Hölder’s inequality and the fact that Pch is a projection operator for the
metric H0, we obtain the following three inequalities for the three terms that compose H:

‖h‖2H-t =

∣∣∣∣

∫

c
h+ (c− c)(Dsh ·Dsc) ds

∣∣∣∣
2

≤ 2

∣∣∣∣
∫

c
hds

∣∣∣∣
2

+ 2L(c)2
∫

c
|Dsh|2 ds ≤

(
2 +

2

λ

)
‖h‖2

H̃1 ,

‖h‖2H-l ≤
∫

c
|Dsh|2 ds ≤

1

λL(c)2
‖h‖2

H̃1 ,

‖h‖2H-d ≤
∫

c
|Dsh|2 ds ≤

1

λL(c)2
‖h‖2

H̃1 .

We then multiply the second by λl and the third by λd and sum up so that we obtain the
inequality

‖h‖2H ≤ ‖h‖2
H̃1

(
λd + λl

λL(c)2
+

(
2 +

2

λ

))

that entails

‖h‖H ≤ ‖h‖H̃1

1

a1

(
1

L(c)
+ 1

)

for an appropriate small a1 > 0, from which the leftmost thesis of Theorem 3.2 follows.
Conversely,

(74)

∫

c
|Dsh|2 ds =

∫

c
|Pc(Dsh)|2 ds+

(∫

c
(Dsh ·Dsc) ds

)2

= ‖h‖2H-d + ‖h‖2H-l

and
∣∣∣∣
∫

hds

∣∣∣∣
2

≤ 2

∣∣∣∣
∫

c
h+ (c− c)(Dsh ·Dsc) ds

∣∣∣∣
2

+ 2

∣∣∣∣
∫

c
(c− c)(Dsh ·Dsc) ds

∣∣∣∣
2

≤ 2‖h‖2H-t + 2L(c)2‖h‖2H-l,(75)

so multiplying (74) by λL(c)2 and summing with (75) yields

‖h‖2
H̃1 ≤ λL(c)2‖h‖2H-d + (λ+ 2)L(c)2‖h‖2H-l + 2‖h‖2H-t;

hence

‖h‖H̃1 ≤ ‖h‖H
(
λL(c)2

λd
+

(λ+ 2)L(c)2

λl
+ 2

)1/2

.

A.2. Proof of Theorem 3.4. We now prove Theorem 3.4.
Proof. The tangent map of (18) is

R2 × R× Tc̃Md → TcM,

ht, hl, hd ,→ h = ht + hlel c̃+ elhd(76)

= ht + hl(c− c) + L(c)hd;
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and the tangent to the inverse (19) is

TcM → R2 × R× Tc̃Md,

h ,→ ht =

∫

c
h+ (c− c)(Dsh ·Dsc) ds,(77)

hl =

∫

c
(Dsh ·Dsc) ds,

hd = L(c)−1
(
h− ht − (c− c)hl

)
.

We now use the equalities shown at the beginning of the appendix, and the definitions
(10) and (11), and write

‖h‖2H-t =

∣∣∣∣
∫

c
h+ (c− c)(Dsh ·Dsc) ds

∣∣∣∣
2

= |ht|2,

‖h‖2H-l =

(∫

c
(Dsh ·Dsc) ds

)2

= (hl)2.

We now carefully recall that, in the definition of the metric (17) on Md, we are using arc
parameter derivatives with respect to the curve c̃ and not the curve c; so

(Dsh
d) =

∂
∂θh

d

|∂∂θ c̃|
=

∂
∂θ

(
h− ht − (c− c)hl

)

|∂∂θ c|

=
∂
∂θh− ∂

∂θ ch
l

|∂∂θ c|
= Dsh−Dsc(Dsh ·Dsc) = Pc(Dsh)(78)

(where P was defined in (70)), so that

‖hd‖2Md
=

∫

c̃
|Dsh

d|2 ds =

∫

c
|Pc(Dsh)|2 ds = ‖h‖2H-d.

We conclude that (18) is an isometry.

A.3. Proof of Proposition 3.6. We now prove Proposition 3.6. The following proof is
based on classical methods, first applied to Riemannian geometries of immersed curves in [35].

Proof. Let G be a group that acts on M . Given a curve c ∈ M and a tangent vector
ξ ∈ TeG (where e is the identity in G, and TeG is the Lie algebra of G), we derive the action
for fixed c and e “moving” in direction ξ; the result of this derivative is a tangent vector
ζ = ζξ,c ∈ TcM (depending linearly on ξ). By the Emmy Noether theorem, if the metric is
invariant with respect to the action of G, and if γ(t) is a geodesic, then

(79)
〈
ζξ,γ(t), γ̇(t)

〉

γ(t)

is constant in t for any choice of ξ ∈ TeG.
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• For the translation group, ζ = ξ ∈ R2, by (71),

〈
ξ,

∂

∂t
C

〉

H
= ξ · ∂

∂t
C

is constant for any ξ; hence ∂
∂tC is constant. Alternatively, we can use the isometry

in Theorem 3.4.
• The rotation group is represented by orthonormal matrices; the tangent TeG is the set

of the antisymmetric matrices B ∈ R2×2; then ζ = BC. We compute

〈
BC,

∂

∂t
C

〉

H-t

= BC ·
(
∂

∂t
C

)
,

〈
BC,

∂

∂t
C

〉

H-l

= 0,

〈
BC,

∂

∂t
C

〉

H-d

=

∫

C
(BDsC) ·

(
Ds

∂

∂t
C

)
ds.

We also know that ∂
∂tC is a constant and call it v; so

(BC) ·
(
∂

∂t
C

)
= (Bc0 + tBv) · v = (Bc0) · v,

which is constant. By direct computation,

∂

∂t
(DsC) = −

(
Ds

∂

∂t
C ·DsC

)
(DsC) +Ds

(
∂

∂t
C

)
,

so we conclude that

1

λd

〈
BC,

∂

∂t
C

〉

H
=

∫

C
(BDsC) ·

(
Ds

∂

∂t
C

)
ds =

∫

C
(BDsC) ·

(
∂

∂t
DsC

)
ds

and that these are constant in t.
• The reparameterization group is G = Diff(S1); the action is the composition φ, c ,→

c ◦ φ; a tangent vector in TeG is a scalar field ξ : S1 → R; we in the end have that

ζ(θ) = ξ(θ)c′(θ)

(where c′ = ∂
∂θ c) or

ζ(θ) = f(θ)Dsc(θ);

that is, ζ is a generic vector field parallel to the curve. We compute

〈
fDsC,

∂

∂t
C

〉

H-t

= 0,

〈
fDsC,

∂

∂t
C

〉

H-l

= 0
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from (71) and (72), while

〈
fDsC,

∂

∂t
C

〉

H-d

=

∫

C
(Ds(fDsC)) ·

(
Ds

∂

∂t
C

)
ds

−
∫

(Ds(fDsC)) ·DsC ds

∫
(DsC) ·

(
Ds

∂

∂t
C

)
ds

= −
∫

C
(fDsC) ·

(
D2

s
∂

∂t
C

)
ds

−
∫

(fDsC) ·D2
sC ds

∫
(D2

sC) ·
(
∂

∂t
C

)
ds

= −
∫

C
f(DsC) ·

(
D2

s
∂

∂t
C

)
ds,

since (DsC) · (D2
sC) = 0.

For the rescaling group, we cannot use Emmy Noether’s theorem directly, since the metric H
is not rescaling-invariant as a whole. The result is then a consequence of Theorem 3.4.

Appendix B. Fast algorithm for matrix exponential derivatives. In this appendix, we
derive a fast method for computing

D(expX)(X;Z) =

∫ 1

0
exp (tX)Z exp ((1 − t)X) dt.

Since D(expX)(X; ·) is a linear operator acting on Z, we have

D(expX)(X;Z) =
∑

ij

zij

∫ 1

0
exp (tX)∆ij exp ((1 − t)X) dt,

where zi,j are the components of the matrix Z, and ∆ij is the n× n-matrix of components

(∆ij)kl =

{
1, (k, l) = (i, j),

0, (k, l) "= (i, j).

Noting that B∆ijC = B·,iCj,·, where B·,i (column vector) denotes column i of B, and Cj,·
(row vector) denotes row j of C, we have that

D(expX)(X;Z) =
∑

ij

zij

∫ 1

0
(exp (tX))·,i (exp ((1− t)X))j,· dt.

Note that (B·,iCj,·)kl = (B⊗C)j+n(k−1),(i−1)n+l, where i, j, k, l ∈ {1, . . . , n}, n is the dimension
of X, and ⊗ denotes the Kronecker product. Therefore,

(80) (D(expX)(X;Z))kl =
∑

ij

zij

(∫ 1

0
exp (tX)⊗ exp ((1− t)X) dt

)

j+n(k−1),(i−1)n+l

.
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We now give a fast method to compute the integral in (80). Note that

∫ 1

0
exp (tX) ⊗ exp ((1− t)X) dt =

∫ 1
2

0
exp (tX)⊗ [exp ((1/2 − t)X) exp (X/2)] dt

+

∫ 1

1
2

[exp (X/2) exp ((t− 1/2)X)]⊗ exp ((1 − t)X) dt

= I1/2(Idn×n ⊗ exp (X/2)) + (exp (X/2) ⊗ Idn×n)I1/2,

where we define

(81) I1/2k =

∫ 1
2k

0
exp (tX)⊗ exp ((1/2k − t)X) dt.

Analogous to the computation above, we find that

(82) I1/2k = I1/2k+1(Idn×n ⊗ exp (X/2k+1)) + (exp (X/2k+1)⊗ Idn×n)I1/2k+1 .

Therefore, given an integer m, we may compute I1 recursively using the formula (82) m times,
and I1/2m can be approximated using a Riemannian sum or any other numerical integration
method.

The technique above resembles the fast Fourier transform algorithm and is similar to a
technique found in [55].

Appendix C. Computing the H gradient of energies. In this appendix, we compute the
gradient of an energy Eac : M → R with respect to the H metric in terms of the H0 metric.
By definition of gradient, we have that

(83) DEac(c;h) = 〈h,∇HE〉H = 〈h,∇H0E〉H0 ∀h ∈ TcM.

Therefore, we solve
∫

c
h · f ds = ht · gt + λlh

lgl + λdL(c)
2
∫

c
Dsh

d ·Dsg
d ds,

where f
def
= ∇H0E and g

def
= ∇HE. We set for convenience

A = (Dsc)(c− c)T , and

A = A(s) is a 2× 2 matrix field along c; note that

ht = D(c)(c;h) =

∫
h− (DsA

T )hds.

One can show that

ht · gt =
∫

c
h ·

[
gt − (DsA)g

t
]
ds,

hlgl = −
∫

c
h · (glD2

sc) ds,
∫

c
Dsh

d ·Dsg
d ds = − 1

L(c)

∫

c
h ·D2

sg
d ds.
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So we must solve for g (i.e., the components gt, gl, and gd of g) in

f = [Id−DsA] g
t − λlg

lD2
sc− λdL(c)D

2
sg

d.

It is clear that gt = f , and noting that gd does not change the length we have that

(84) f · (c− c) = −[(DsA)gt] · (c− c) + λlg
l = λlg

l,

which verifies (62). Eventually we obtain the equation

(85) −λlg
lD2

sc− (f − f)− (DsA)f = λdL(c)D
2
sg

d.

We note that the left-hand side (LHS) has zero integral along the curve, so we integrate both
sides to obtain

(86) −λlg
lDsc− f̂ −Af + v = λdL(c)Dsg

d,

where f̂(σ)
def
=

∫ σ
0 (f(s) − f) ds; the above identity is determined up to the constant v ∈ R2.

Since the right-hand side (RHS) of (86) has zero average on the curve, this forces the choice
of v, which will be

(87) v
def
=

∫

c
f̂ +Af ds.

We then let w
def
= f̂ +Af − v and rewrite (86) as

(88) −λlg
lDsc− w = λdL(c)Dsg

d,

where both the LHS and RHS have zero average.
To solve (88) for gd, we now integrate once again and obtain

(89) −λlg
l(c− c)− ŵ + k = λdL(c)g

d,

where ŵ(σ)
def
=

∫ σ
0 w(s) ds, and once again the identity is determined up to the constant k ∈ R2.

The constant k is obtained by imposing that (gd)t = 0; that is, gd does not move the centroid
of the curve.9

Appendix D. Discretization of (42). We discretize (42) to solve for the vertical compo-
nent of (δe, δf) ∈ T(e,f)St(2, C

∞). Let ei, fi, δei, δfi (1 ≤ i ≤ N) be uniform samplings of
e, f, δe, δf : S1 → R. Set

e0 = ±eN , f0 = ±fN , δe0 = ±δeN , δf0 = ±δfN ,

eN+1 = ±e1, fN+1 = ±f1, δeN+1 = ±δe1, δfN+1 = ±δf1;

9The other identity (gd)l =
∫
c
Dsg

d · Dsc ds = 0 is true regardless of the choice of k and v and is verified
by the identity (86).
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one chooses + or − if the curve is of even or odd winding number, respectively. Define
bI , ci, di, gi (1 ≤ i ≤ N) as

bi = −1

2
[δei(ei+1 − ei−1)− ei(δei+1 − δei−1) + δfi(fi+1 − fi−1)− fi(δfi+1 − δfi−1)],

ci =
1

2
(e2i + f2

i ),

di =
1

2
[ei(ei+1 − ei−1) + fi(fi+1 − fi−1)],

gi =
1

2

[
ei(ei+1 − 2ei + ei−1)−

1

2
(ei+1 − ei−1)

2

+ fi(fi+1 − 2fi + fi−1)−
1

2
(fi+1 − fi−1)

2

]
.

Let A = (aij), where 1 ≤ i, j ≤ N . Set, for 1 ≤ i, j ≤ N ,

aii = −ci + gi, ai(i−1) = ci − di, ai(i+1) = ci + di, aij = 0 for j − 1 > i > j + 1,

and B = (bi). Note that ai0 := aiN , ai(N+1) := ai0. Then, if x = (βi) is a sampling of β in
(42), Ax = B.
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