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Abstract. Following the seminal work of Nesterov, accelerated optimization methods have been used to pow-
erfully boost the performance of first-order, gradient based parameter estimation in scenarios where
second-order optimization strategies are either inapplicable or impractical. Not only does accelerated
gradient descent converge considerably faster than traditional gradient descent, but it also performs
a more robust local search of the parameter space by initially overshooting and then oscillating
back as it settles into a final configuration, thereby selecting only local minimizers with a basis of
attraction large enough to contain the initial overshoot. This behavior has made accelerated and
stochastic gradient search methods particularly popular within the machine learning community. In
their recent PNAS 2016 paper, A Variational Perspective on Accelerated Methods in Optimization,
Wibisono, Wilson, and Jordan demonstrate how a broad class of accelerated schemes can be cast
in a variational framework formulated around the Bregman divergence, leading to continuum limit
ODEs. We show how their formulation may be further extended to infinite dimensional manifolds
(starting here with the geometric space of curves and surfaces) by substituting the Bregman di-
vergence with inner products on the tangent space and explicitly introducing a distributed mass
model which evolves in conjunction with the object of interest during the optimization process. The
coevolving mass model, which is introduced purely for the sake of endowing the optimization with
helpful dynamics, also links the resulting class of accelerated PDE based optimization schemes to
fluid dynamical formulations of optimal mass transport.

Key words. partial differential equations, acceleration, Nesterov, mass transport optimization, gradient descent,
variational, manifolds

AMS subject classifications. 35B35, 49M99, 35J20, 35R30, 53C99, 65M99

DOLI. 10.1137/19M1304210

1. Introduction. Following the seminal work of Nesterov, accelerated optimization meth-
ods (sometimes referred to as momentum methods) have been used to powerfully boost the
performance of first-order, gradient based parameter estimation in scenarios where second-
order optimization strategies are either inapplicable or impractical. Not only does accelerated
gradient descent converge considerably faster than traditional gradient descent, but it also
performs a more robust local search of the parameter space by initially overshooting and then
oscillating back as it settles into a final configuration, thereby selecting only local minimiz-
ers with a basis of attraction large enough to contain the initial overshoot. This behavior
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has made accelerated and stochastic gradient search methods particularly popular within the
machine learning community [31, 28, 27, 22, 21, 20, 16, 15, 6, 42]. So far, however, acceler-
ated optimization methods have been restricted to searches over finite dimensional parameter
spaces.

Recently, however, Wibisono, Wilson, and Jordan outlined a variational ODE framework
in [59] (which we will summarize briefly in section 2.4) formulated around the Bregman di-
vergence and which yields the continuum limit of a broad class of accelerated optimization
schemes, including that of Nesterov’s accelerated gradient method [32] whose continuum ODE
limit was also demonstrated by Su, Boyd, and Candeés in [48]. Here he will show how a similar
high level framework may be adapted for infinite dimensional manifolds through the formu-
lation of a generalized time-explicit action which can be viewed both as a specialization and
generalization! of the Bregman Lagrangian presented in [59]. While the extension we outline
from the ODE framework into the PDE framework is general enough to be applied to a variety
of infinite dimensional or distributed-parameter optimization problems (dense shape recon-
struction/inversion, optical flow estimation, image restoration, etc.), the specific examples
presented here will focus on the active contour and active surface based optimization.’

mathematical, numerical, and computational challenges and technicalities which do not
arise in finite dimensions. For example, the evolving parameter vector in finite dimensional
optimization can naturally be interpreted as a single moving particle in R™ with a constant
mass which, in accelerated optimization schemes, gains momentum during its evolution. Since
the mass is constant and fixed to a single particle, there is no need to explicitly model it. When
evolving a continuous curve, surface, region, or function, however, the notion of accumulated
momentum during the acceleration process is much more flexible, as the corresponding con-
ceptual mass can be locally distributed in several different ways throughout the domain which
will in turn significantly affect the evolution dynamics. In fact we intend to exploit this added
design flexibility to further capture some of the same coarse-to-fine regularization properties
of Sobolev gradient flows [60, 49] within the accelerated optimization context as well, but with
far less computational cost.

The discrete implementation of accelerated PDE models will also differ greatly from ex-
isting momentum based gradient descent schemes in finite dimensions. Spatial and temporal
steps sizes will be determined based on CFL stability conditions for finite difference approxi-
mations of the PDE’s. Finally, in the PDE framework, viscosity solutions will be required in
most cases to propagate through shocks and rarefactions that may occur during the evolution
of a continuous front, a phenomenon which manifests itself differently and is therefore handled
differently in the finite dimensional case. As such, these considerations will also impact the
numerical discretization of accelerated PDE models.

Finally, in part due to these different discretization criteria and in part to avoid unneces-
sary complexity in the manifold case, we will abandon the Bregman Lagrangian described in
[59] and will instead exploit a simpler time-explicit generalized action which will allow us to

1We abandon the more general Bregman divergence in favor of simpler inner products, which, however,
depend on the more general structure of the tangent space for the associated infinite dimensional manifold.

2A conference version of this paper was published in the IEEE Conference on Computer Vision and Pattern
Recognition, 2019 [62].
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work directly with the continuum velocity of the evolving entity rather than finite displace-
ments with the Bregman divergence. Especially for the case of curves and surfaces considered
here, this avoids the complication of calculating geodesic distances on highly curved, infinite-
dimensional manifolds, but lets us work more easily in the tangent space instead.

2. Background and prior work. Geometric partial differential equations have played an
important role in image analysis and computer vision for several decades now. Applications
have ranged from low level processing operations such as denoising using anisotropic diffusion,
blind deconvolution, and contrast enhancement; to midlevel processing such as segmentation
using active contours and active surfaces, image registration, and motion estimation via optical
flow; to higher level processing such as multiview stereo reconstruction, visual tracking, simul-
taneous localization and mapping (SLAM), and shape analysis. See, for example, [47, 46, 43]
for introductions to PDE methods already established within computer vision within the
1990s, including level set methods [44] already developed in the 1980s for shape propagation.
Several such PDE methods have been formulated, using the calculus of variations [57] as gra-
dient descent based optimization problems in functional spaces, including geometric spaces of
curves and surfaces.

During the past decade a popular trend has arisen whereby several such variational prob-
lems, which are nonconvex, have been reformulated and relaxed to convex optimization prob-
lems [10, 8, 18, 45], which allows one to build on the wealth of algorithms developed in the
optimization literature [5]. While such methods have led to efficient and robust numerical
schemes, the class of problems for which such reformulations apply is a limited class. We seek
to develop optimization methods for a wider class of (nonconvex) problems.

Recently, Chaudhari et al. have established connections between relaxation techniques
used in training deep neural networks and PDE’s in [13] based on the continuum Fokker—
Planck equation limit. They, in turn, develop and demonstrate improved implementations
of stochastic gradient descent based on the viscous Hamilton—Jacobi equation. Subsequently,
n [14], Chaudhari and Soatto demonstrate that stochastic gradient descent (SGD) methods
perform variational inference (although not on the original loss function). While they do
exploit momentum to accelerate convergence in their numerical algorithms, this acceleration
component is introduced on the backend of the final discreet algorithm. The methodology
presented in section 3.2.3, through the incorporation of an auxiliary evolving density function,
offers a potential strategy to directly integrate acceleration into their original continuum PDE
formulation of SGD as well. However, our focus here will remain exclusively on acceleration,
by itself, within the continuum PDE framework.

2.1. Geometric active contours (an example of gradient PDE optimization). For exam-
ple, several active contour models are formulated as gradient descent PDE flows of application-
specific energy functionals F which relate the unknown contour C' to given data measurements.
Such energy functionals are chosen to depend only upon the geometric shape of the contour
C, not its parameterization. Under these assumptions the first variation of £ will have the
following form:

(2.1) 6E:—/ F(5C - N)ds,
C

where fN represents a perturbation field along the unit normal N at each contour point
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and ds denotes the arc length measure. Note that the first variation depends only upon the
normal component of a permissible contour perturbation §C. The form of f will depend upon
the particular choice of the energy. For example, in the popular Chan—Vese active contour
model [9] for image segmentation, f would be expressed by (I — c¢1)? — (I — ¢2)? + ax, where
I denotes the image value at a given contour point, a an arc length penalty weight, x the
curvature at a given contour point, and ¢; and c¢o the means of the image inside and outside
the contour, respectively. As an alternative example, the geodesic active contour model [7, 25]
would correspond to f = ¢prN — (V¢ - N)N, where ¢ > 0 represents a point measurement
designed to be small near a boundary of interest and large otherwise. In all cases, though,
the gradient descent PDE will the following explicit form:

oC
(2.2) T fN  (explicit gradient flow).
This class of contour flows, evolving purely in the normal direction, may be implemented
implicitly in the level set framework [44] by evolving a function ¢ whose zero level set represents
the curve C' as follows:
I

i —fIVe|  (implicit level set flow),

where f(z,t) denotes a spatial extension of f(s,t) to points away from the curve.

2.2. Sobolev gradients for more robust coarse-to-fine PDE based optimization. The
most notorious problem with most active contour and active surface models is that the normal
speed function f depends pointwise upon noisy or irregular data measurements, causing im-
mediate fine scale perturbations in the evolving contour which cause it to become very easily
attracted to (and trapped within) spurious local minimizers. This often makes the active
contour model strongly dependent upon initialization, except for a limited class of convex
or polyconvex energy functionals for which numerical schemes can be devised to reach global
minimzers reliably. The traditional way to combat this sensitivity is to add strong regularizing
terms to the energy functional which penalize fine scale irregularities in the contour shape.
Similar problems and regularization strategies are applied in other PDE based optimization
applications outside the realm of the illustrative active contour example being considered here
(for example, in Horn and Schunck style optical flow computation [19]).

This energy regularization strategy has two drawbacks. First, most regularizers lead to
second order (or higher) diffusion terms in the gradient contour flow, which impose much
smaller time step limitations on the numerical discretization of the evolution PDE. Thus,
significantly more evolution steps are required, which incurs a heavy computational cost in
the minimization process. Second, regularizers, while endowing a level of resistance to noise
and spurious structure, impose regularity on the final converged contour as well, making it
difficult or impossible to capture features such as sharp corners or narrow protrusions/inlets
in the detected shape. This can lead to unpleasant trade-offs in several applications.

For the illustrative case of active contours, significantly improved robustness in the gradi-
ent flow, without additional energy regularization, can be attained by using geometric Sobolev
gradients [12, 11, 53, 54] in place of the standard L2-style gradient used in traditional active
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Active contour (evolving left-to-right) without regularization

Active contour (evolving left-to-right) with added regularization

Sobolev active contour (evolving left-to-right) without regularization

Figure 1. Sobolev gradients versus energy regularization.

contours. We refer to this class of active contours as Sobolev active contours, whose evolution
may be described by the following integral PDE

(2.3) 863 = (fN)* K (Sobolev gradient flow).

Here * denotes convolution in the arc length measure with a smoothing kernel K to invert
the linear Sobolev gradient operator. The numerical implementation is not carried out this
way, but the expression gives helpful insight into how the Sobolev gradient flow (2.3) relates
to the usual gradient flow (2.2). Namely, the optimization process (rather than the energy
functional itself) is regularized by averaging pointwise gradient forces fNN through the kernel
K to yield a smoother contour evolution. This does not change the local minimizers of the
energy functional, nor does it impose extra regularity at convergence, but it induces a coarse-
to-fine evolution behavior [49, 55, 60] in the contour evolution, making it much more resistant
to spurious local minima due to noise or other fluctuations in f.

The regularity of the coarse-to-fine Sobolev gradient flow compared with regularity im-
posed on the energy functional is illustrated in Figure 1. Along the top row we see the
evolution of a standard active contour in a very noisy image without regularizing terms in the
energy function to keep the contour smooth. The contour quickly gets trapped in a noisy local
minimum configuration before reaching the desired square boundary. Of course, we can add
a regularizing term to the energy to prefer smoother contours. We see in the middle row that
this fixes the noise problem but does not allow us to capture the sharp corners of the square.
Along the bottom row, instead, we show the evolution of the Sobolev active contour for the
original unregularized energy from the top row. The initial stages of the evolution maintain a
smooth contour, not because the Sobolev gradient prefers a smooth contour, but because it

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/03/21 to 71.235.42.206. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

2034 A. YEZZI, G. SUNDARAMOORTHI, AND M. BENYAMIN

prefers a smooth evolution. As the Sobolev active contour nears the boundary of the square,
finer scale motions are incorporated to bring out the corners. The final converged contour
responds to local noise, but only in the vicinity of a desired minimizer.

However, while the Sobolev gradient descent method is extremely successful in making an
active contour or surface (or other evolving classes of functions) resistant to a large class of
unwanted local minimizers, it comes at a heavy computational cost. The spatial integration
of gradient forces along the evolving front must occur during every time step, and while there
are tricks to do this quickly for closed 2 dimensional (2D) curves [29, 51, 50, 2] there are no
convenient alternatives for 3 dimensional (3D) surfaces, nor for regions (even in 2 dimensions)
when applying Sobolev gradient flows to other functional objects (images, optical flow, etc.).
The linear operator inversion imposes a notable per-iteration cost, which we will instead
distribute across iterations in the upcoming accelerated coupled PDE evolution schemes.

2.3. Momentum methods and Nesterov’s accelerated gradient. If we step back to the
finite dimensional case, an alternative and computationally cheaper method to regularize any
gradient descent based iteration scheme is to employ the use of momentum. In such schemes
the new update becomes a weighted combination of the previous update (the momentum
term) and the newly computed gradient at each step. This leads to a temporal averaging of
gradient information computed and accumulated during the evolution process itself, rather
than a spatial averaging that occurs independently during each time step. As such it adds an
insignificant per iteration computation cost while significantly boosting the robustness (and
often the convergence speed) of the optimization process.

Momentum methods, including stochastic variants [16, 20], have become very popular in
machine learning in recent years [6, 15, 21, 22, 27, 31, 42, 28]. Strategic dynamically changing
weights on the momentum term can further boost the descent rate. Nesterov put forth the
following famous scheme [32] which attains an optimal rate of order t% in the case of a smooth,
convex energy function E(x):

1
Ykt1 = T — BVE(U%), Trr1 = (1 — ) Ykt1 + VYo

1— A N L+, /14+4X2

Y - 2 ’

where z; is the kth iterate of the algorithm, g, is an intermediate sequence, and ~y; are
dynamically updated weights.

Yk

2.4. A variational framework for accelerated ODE optimization. Recently in [59]
Wibisono, Wilson, and Jordan presented a variational generalization of Nesterov’s [32] and
other momentum based gradient descent schemes in R™ based on the Bregman divergence of
a convex distance generating function h,

(2.4) D(y,z) = h(y) — h(z) = (Vh(z),y —x),

and careful discretizations of the Euler-Lagrange equation for the time integral (evolution
time) of the following Bregman Lagrangian,

L(X,V,t) = DO | DX 4+ 7DV, X) — LOUX)],
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where the potential energy U represents the cost to be minimized. In the Euclidean case,
where D(y, z) = |y — «||%, this simplifies to

L= () | g—al®) 1HV||2 —e?OHOUX) |,
2
T
where T models the kinetic energy of a unit mass particle in R™. Nesterov’s methods [32,
36, 35, 34, 37, 33] belong to a subfamily of Bregman Lagrangians with the following choice of
parameters (indexed by k > 0),

a =logk —logt, b=k logt+log A\, v =k logt,

which, in the Euclidean case, yields a time-explicit generalized action (compared to the time-
implicit standard action T — U from classical mechanics [17]) as follows:
tk+1

(2.5) £="— (T - )\k2tk‘2U> .

In the case of k = 2, for example, the Euler-Lagrange equations for the integral of this time-
explicit action yield the continuum limit of Nesterov’s accelerated mirror descent [33] derived
in both [48, 27]. The PDE acceleration framework that we present here is also extended to
the case of diffeomorphisms [64, 56, 52] in concurrent work, and linear function spaces in [4].

3. Accelerated optimization in the PDE framework. We now develop a general strategy,
based on a generalization of the Euclidean case of Wibisono, Wilson, and Jordan’s formulation
[59] reviewed in section 2.4, for extending accelerated optimization into the PDE framework.
While our approach will be motivated by the variational ODE framework formulated around
the Bregman divergence in [59], we will have to address several mathematical, numerical, and
computational considerations which do not need to be addressed in finite dimensions.

For example, the evolving parameter vector in finite dimensional optimization can natu-
rally be interpreted as a single moving particle in R™ with a constant mass which, in acceler-
ated optimization schemes, gains momentum during its evolution. Since the mass is constant
and fixed to a single particle, there is no need to explicitly model it. When evolving a con-
tinuous curve, surface, region, or function, however, the notion of accumulated momentum
during the acceleration process is much more flexible, as the corresponding conceptual mass
can be locally distributed in several different ways throughout the domain which will in turn
significantly affect the evolution dynamics. We outline two different mass models in sections
3.2.2 and 3.2.3 as starting points and show how additional control of the optimization dynam-
ics can be introduced in conjunction with the more flexible second mass model by considering
independent mass-related potential energy terms in section 3.5.2. In all cases, the outcome of
these formulations will be a coupled system of first-order PDEs which govern the simultaneous
evolution of the continuous unknown (curves in the case considered here), its velocity, as well
as the supplementary density function which describes the evolving mass.

In addition, as pointed out from the onset, the numerical discretization of accelerated
PDE models will also differ greatly from existing momentum based gradient descent schemes
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in finite dimensions. Spatial and temporal steps sizes will be determined based on CFL
stability conditions for finite difference approximations of the PDEs and viscosity solution
schemes will be required in most cases to propagate through shocks and rarefactions that may
occur during the evolution of a continuous front. This is part of the reason we replace the
more general Bregman-Lagrangian in [59] with the simpler time-explicit generalized action
(2.5), together with the additional benefit that such a choice allows us to work directly with
the continuum velocity of the evolving entity (or other generalizations that are easily defined
within the tangent space of its relevant manifold) rather than finite displacements utilized by
the Bregman divergence (2.4).

3.1. General approach. Just as in [59], the energy functional E to be optimized over
the continuous infinite dimensional unknown (whether it be a function, a curve, a surface,
or a diffeomorphic mapping) will represent the potential energy term U in the time-explicit
generalized action (2.5). Next, a customized kinetic energy term T will be formulated to incor-
porate the dynamics of the evolving estimate during the minimization process. Note that just
as the evolution time ¢ would represent an artificial time parameter for a continuous gradient
descent process, the kinetic energy term will be linked to artificial dynamics incorporated into
the accelerated optimization process. As such, the accelerated optimization dynamics can
be designed completely independently of any potential physical dynamics in cases where the
unknown might be connected with the motion of real objects. Several different strategies can
be explored, depending upon the geometry of the specific optimization problem, for defining
kinetic energy terms, including various approaches for attributing artificial mass (both its
distribution and its flow) to the actual unknown of interest in order to boost the robustness
and speed of the optimization process.

Once the kinetic energy term has been formulated, the accelerated evolution will be ob-
tained (prior to discretization) using the calculus of variations [57] as the Euler-Lagrange
equation of the following time-explicit generalized action integral

th! 2, k-2
(3.1) /k (T Y U) dt.

In the simple k& = 2 case, the main difference between the resulting evolution equations versus
the classical principle of least action equations of motion (without the time explicit terms
in the Lagrangian) is an additional friction-style term whose coefficient of friction decreases
inversely proportional to time. This additional term, however, is crucial to the accelerated
minimization scheme. Without such a frictional term, the Hamiltonian of the system (the
total energy T+ U), would be conserved, and the associated dynamical evolution would never
converge to a stationary point. Friction guarantees a monotonic dissipation of energy, allowing
the evolution to converge to a state of zero kinetic energy and locally minimal potential energy
(the optimization objective).

This yields a natural physical interpretation of accelerated gradient optimization in terms
of a mass rolling down a potentially complicated terrain by the pull of gravity (Figure 2). In
gradient descent, its mass is irrelevant, and the ball always rolls downward by gravity (the
gradient). As such the gradient directly regulates its velocity. In the accelerated case, gravity
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x(t) = position of ball
U

Figure 2. Accelerated descent physics interpretation.

regulates its acceleration. Friction can be used to interpolate these behaviors, with gradient
descent representing the infinite frictional limit as pointed out in [59].

Acceleration comes with two advantages. First, whenever the gradient is very shallow (the
energy functional is nearly flat), acceleration allows the ball to accumulate velocity as it moves
so long as the gradient direction is self-reinforcing. As such, the ball approaches a minimum
more quickly. Second, the velocity cannot abruptly change near a shallow minimum as in
gradient descent. Its mass gives it momentum, and even if the acceleration direction switches
in the vicinity of a shallow minimum, the accumulated momentum still moves it forward for
a certain amount of time, allowing the optimization process to look ahead for a potentially
deeper minimizer.

3.2. Accelerated active contours. We now illustrate the steps in the process for devel-
oping PDE based accelerated optimization schemes for the specific case of geometric active
contours. The resulting coupled PDE evolutions will retain the parameterization independent
property of gradient descent based active contours models and will therefore remain amenable
to implicit implementation using level set methods [44].

We begin, however, by reviewing some basic differential contour evolution properties that
will be useful in deriving accelerated active contour formulations. In particular, it is useful to
understand any contour evolution behavior in terms of its local geometric frame, consisting
of the unit tangent and normal vectors.

Let C(p,t) denote an evolving curve where t represents the evolution parameter and
p € [0,1] denotes an independent parameter along each fixed curve. The unit tangent, unit
normal, and curvature will be denoted by T = %—(SJ, N, and k, respectively, with the sign
convention for x and the direction convention for N chosen to respect the planar Frenet
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equations ‘?9 = kN and 8N = —xT’, where s denotes the tlme-dependent arc length parameter
whose derivative with respect to p yields the parameterization speed 2 6 = H H

Letting o and 8 denote the tangential and normal speeds of the evolving curve,3

9C _ oT + BN,

(3.2) =

the frame itself can be shown to evolve as follows:

oTr 3} ON 0
(3.3) 8t:<8ﬁ+ )N, il <a§+ai€> T.

Differentiating the velocity decomposition (3.2) with respect to t, followed by the frame evo-
lution (3.3) substitution, yields the acceleration

b0 ZC (2 (2 ) ) 1 (L (L))

which may be rewritten as the following two scalar evolution equations for the tangential and
normal speeds, in terms of the tangential and normal components of the contour acceleration,
respectively:

oo H2C B 03 *C Bl
(3.5) =g T+8 <+a ) = 5m N-a (85 +a/<e>

3.2.1. Contour potential energy. For geometric active contours, we start by defining the
potential energy U to be an originally provided energy functional £ which depends only upon
the geometric shape of the contour C' (not its parameterization). Under these assumptions the
first variation of the potential energy will have the following form, just as in (2.1) presented ear-
lier in section 2.1, where fIN denotes the backward local gradient force at each contour point:

—/Cf(éC-N ds

3.2.2. Constant density model. To formulate an accelerated evolution model, we define
a kinetic energy, which requires a notion of mass coupled with velocity. The simplest starting
model would be one of constant mass density p (per unit arc length along the contour) and
an integral of the squared norm of the pointwise contour evolution velocity:*

1 oCc  oC
(3.6) T = p/ <8t 375) ds.

3Note that the instantaneous geometric deformation of the curve is determined exclusively by the normal
speed 3, and that gradient flows for geometric active contours can all be formulated such that the tangential
speed a vanishes. We will see later that the same is possible for accelerated flow models as well.

4A similar kinetic energy model in the context of the classical action T — U, for example, was used to
develop dynamic geodesic snake models for visual tracking in [40].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/03/21 to 71.235.42.206. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

ACCELERATED OPTIMIZATION IN THE PDE FRAMEWORK 2039

Plugging this into the generalized action integral (3.1) and computing the Euler-Lagrange
equation leads to our first, and simplest, accelerated model:

(3.7)
O _NHEE L (@C a0y oC o (1]0C|P0C k+10C
ot2 ) NP 0sot 0s ) ot 0s\2| 0t Os t ot
acceleration —gradient friction

wave propagation terms

If we start with zero initial velocity we can decompose this nonlinear second-order PDE into
the following coupled system of nonlinear first-order PDEs,

oc

9B Nk*th2 1
=~ — BN e
6t B )

k+1
72 N —
Tl f+ =6k

(3.8) . :

B.

Since the contour evolution remains purely geometric (only in the normal direction N) we
may also write down an implicit level set version of the coupled PDE system as follows:

W w)_kHB
ot IVl £

where f (z,t) and B (x,t) denote spatial extensions of f and 3, respectively.

. 0B  Ak2t(F-2) 1-
sivel, 28— ey <62

(39) ot 2

3.2.3. Conserved flowable mass model. The kinetic energy in the accelerated formula-
tion is invented to endow the minimization evolution process with helpful dynamics for the
sake of faster and more robust convergence. Thus, just as the potential energy does not actu-
ally represent a real physical energy, there is no need to impose real physical considerations on
the kinetic energy either. Nonetheless, the simple constant density model feels quite unnatural
in that it does not preserve total mass if the contour length changes during its evolution: mass
is created when the contour expands and is destroyed when the contour contracts.

A more flexible and natural way to attribute mass to the evolving contour is to consider an
arbitrary and independent distribution of mass along the contour which evolves as the curve
evolves. As such, the mass density p can vary both spatially and temporarily, while the total
integrated mass is still conserved. In such a model, though, not only does mass evolve as a re-
sult of contour shape deformation, but it may also flow along the contour without changing its
geometry (therefore contributing to the kinetic energy without affecting the potential energy).
A simple interpretation would be that the contour shape represents a moving container for a
fluid which not only gets pushed around by the extrinsic motion of the container but which
may also flow with an independent relative internal speed v inside of the container (i.e., along
the tangent direction of the contour). As such, the velocity of each mass particle at a given
contour point would be the sum of the contour velocity and the internal mass flow velocity:

oC

v = internal mass flow speed, total mass velocity = o + va—.
s

This suggests a more general kinetic energy model as follows:

1 |loc  aC
1 v [ L]2¢ . ,2¢
(3.10) /(;2p'8t+v83

2
ds
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but with the density evolution constrained by the following continuity equation to ensure local
conservation of mass:

dp 0 0*C aC\
~———

N——
mass change length change

The latter may be incorporated as a Lagrange multiplier constraint when computing the
Euler-Lagrange equation of the generalized action integral (3.1). This results in the following
second-order PDEs which, together with (3.11), yield the accelerated system as a coupled
evolution of C' along with the auxiliary mass density p and internal flow v field responsible
for these helpful dynamics:

*C 9*C 2*’C  k+10C AE2tE=2 f

12 —  N=—(2 2 — ) N+

(3.12) (“asat+” 9> 4 8t> o
v 82C+0820+k+18£ 0C _(0v k1Y
ot ot? dsot t ot) Os ds t

Notice in this flowable conserved mass model, that only the normal component of the curve
acceleration %279 is governed by the Euler-Lagrange equation. The tangential acceleration,
even though it affects the internal mass flow, can be chosen freely. We may exploit this degree
of freedom to keep the tangential velocity of the curve equal to zero, thus keeping the evolution
purely geometric. Accordingly, and just as in the constant density case, we may convert the
second-order system (3.12) into a first-order geometric system of PDEs. In particular, if we
start out with zero initial velocity, we obtain the following equivalent system of three coupled
evolution PDEs for C, V, and p which, in contrast with the constant density scheme, also

avoids the calculation of curvature:

acceleration . advection friction
g SN ac\ OV E 11
ov Ak
1 T N (v )R
(3:.13) ot p / <V ds > ds t
oC op oC\ dp ov oC
Y _(V.N)N 9F _ _ il B i
ot (L,_)« 7 ot <V 35) os " 9s  0s
5 .

mass preservation

Here the velocity field defined as V' = vT + BN captures both the tangential flow of the mass
as well as the normal flow of the curve itself. As in the constant density model, we see that
the evolution of the contour remains purely geometric (only in the normal direction), and thus
with suitable spatial extension functions V(ac, t) and p(z,t) this system can easily be adapted
to the level set framework as well. One notable difference, however, is that the evolution

equation for the level set function v itself, becomes linear in this case:

%_A

(3.14) 5 =V V.
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3.3. Mixing optimization dynamics with physical time dynamics. Again, while the ki-
netic energy models, including their attributed mass density functions p, are invented purely
for the sake of improved optimization, there may be applications in which physically meaning-
ful considerations could nonetheless be usefully blended into the optimization dynamics. Two
particular application areas where very strong connections could be made include dynamic
tracking as well as optimal mass transport.

3.3.1. Connections with dynamic tracking. Niethammer and Tannenbaum [38, 39, 40]
introduced a new geometric dynamical active contour model that has strong connections to
the present work. The motivation is visual tracking. The authors make the point that the
use of active contours is typically preformed statically. More specifically, the active contour
captures the given object at a certain time ¢ and then some prediction procedure is employed
to give a reasonable initial placement at time ¢ 4+ 1. The problem is that the curve evolution
gets decoupled from the dynamics of the target. The standard dynamic approaches are marker
particle based and thus lose the advantages of the level set methodology, the shortcomings
of such particle-based implementations. The works of [38, 39, 40] develop a straightforward,
efficient, level set based approach for dynamic curve evolution which removes the separation of
segmentation and prediction, while preserving the many advantages of level set formulations.
The key idea is based on the minimization of a novel energy functional that adds dynamics
into the geodesic active contour framework.

More precisely, the above approach develops dynamical geodesic snake models for visual
tracking based on the classical action T —U using constant density mass models. This endowed
the moving contour with dynamics in actual physical time which could be used in the context
of dynamic observers [41].

Such a scheme for frame-to-frame evolution of a contour within a video would pair very
naturally, for example, with the simplest-case optimization dynamics from section 3.2.2 us-
ing the same kinetic energy model (3.6), but in the context of the generalized action (2.5)
for static optimization within each individual video frame. Conversely, the more general ki-
netic energy models outlined in section 3.2.3 for optimization using the generalized action,
could be similarly be adapted to the the problem of visual tracking using the classical ac-
tion.

3.3.2. Connections with optimal mass transport. The conserved evolutionary mass model
underlying the accelerated system (3.13) begins to exhibit clear connections to problems in
optimal mass transport [24, 3, 1, 58], especially in the fluid-dynamical formulation of Benamou
and Brenier [3].

Optimal mass transport is a very old problem first introduced by the civil engineer Monge
in 1781 [30] and concerned with finding the optimal way, in the sense of minimal transportation
cost, of moving a pile of soil from one site to another. This problem of optimal mass transport
was given a modern formulation in the work of Kantorovich [23, 24], and so is now known
as the Monge—Kantorovich problem. As originally formulated, the problem has no explicit
dynamics, and basically leads to a metric on probability densities, the Wasserstein distance.
Optimal mass transport is a very active area of research with application to numerous disci-
plines including probability, econometrics, fluid dynamics, automatic control, transportation,
statistical physics, shape optimization, expert systems, and meteorology.
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A major development in optimal mass transport theory was realized in the seminal dy-
namic approach to optimal mass transport by Benamou and Brenier [3]. These authors base
their approach to optimal mass transport on ideas from fluid mechanics via the minimization
of a kinetic energy functional subject to a continuity constraint.

The work described above is very much in line with the latter dynamics approach. In fact,
given that the mass is introduced as an independent auxiliary variable for the sake of accelera-
tion, we may just as easily allow it to live within the contour interior rather than along the con-
tour boundary. The resulting region based extension of the kinetic energy model (3.10) would
then match the functional whose minimizer, as demonstrated Benamou and Brenier, yields a
flow of diffeormorphisms which minimize the Wasserstein distance between the mass distribu-
tions at any two instances along its trajectory (including the initial and final distributions).

3.4. Accelerated active surfaces. The accelerated active contour models developed in
section 3.2 offer a more robust evolution framework for generic contour based optimization
problems, just as the class of Sobolev active contour models introduced earlier. Both method-
ologies regularize the optimization process, without imposing regularity on the final optimized
result, greatly boosting the evolving contour’s resistance to spurious or shallow local minimiz-
ers. In both cases, this desirable property is achieved by effectively averaging contributions
from several local gradient forces in order to determine the instantaneous evolution of any
given point on the curve.

In the case of Sobolev active contours, this averaging is done spatially at each fixed time
instant by an effective convolution along the curve. Unfortunately, while special tricks exist
to do this quickly for closed curves, they do not apply to surfaces or higher dimensional
manifolds, where Laplace—Beltrami style PDEs must instead be solved along the surface at
every time instant in order to calculate the Sobolev gradeint.

Accelerated active contour models, on the other hand, perform a temporal rather than
spatial averaging. As a particle along the curve accelerates, its instantaneous velocity rep-
resents the accumulation of local gradient information over its recently traveled trajectory,
rather than the accumulation of local gradient information from its neighboring contour points
at the same instant in time. An important advantage of the time based averaging, in contrast
to the instantaneous spatially based averaging® in Sobolev style active contours, is that the
same computational speed up in 2 dimensions will apply equally in 3 dimensions and higher.

In the case of geometric active surfaces, we start with a potential energy which depends
only upon the geometric shape of the contour S (again, as in the contour case, not its param-
eterization). Under these assumptions the first variation of the potential energy will have the
following form,

6U:—/f(5C-N)dA,
S

where fN represents a force along the unit normal N at each point on the surface S and
where dA denotes the surface area measure. The implicit level set framework is particularly

°In section 3.5 we show how additional strategies within the accelerated framework can be devised to further
incorporate some level of spatial averaging, thereby obtain the maximum amount of evolution robustness and
leveraging the best of both Sobolev and accelerated optimization yet without the added computational cost of
inverting the Sobolev operator.
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convenient for active surfaces given the complexities of dealing with 3D meshes. In the level
set framework, the (nonaccelerated) gradient descent surface evolution PDE has the same
form as in 2 dimensions, but is applied to a 3D grid instead. Namely,

o p

" — —FIvl,
where f (z,t) denotes a spatial extension of f to points away from the surface. Narrow band
methods are especially important in 3 dimensions to keep the computational cost of updating
the level set function ¢ to a minimum (as well as limiting the neighborhood where extension
functions such as f need to be computed and evolved).

In the simplest constant density model case, applied to surfaces. the kinetic energy term

for the accelerated model will have a similar form but with the density p interpreted per unit

surface area as
1 0s 0S8
T== — . —)dA
2p/5 <6t 6t>d

Computing the Euler-Lagrange equation of the generalized action integral (3.1) and writing
it in the level set framework yields the same system of first-order PDEs as in the contour case,
except now in 3 dimensions,

oy

0B Ak2t(-2)

1 Vzp)_lﬁ—lA
2 wel) T P

where f (z,t) and B (x,t) denote 3D spatial extensions of f and [, respectively.

3.5. Acceleration with spatial regularity (capturing Sobolev gradient properties). There
are several ways in the PDE framework that we may seek to combine the spatial averaging
of gradient information inherent to Sobolev gradient descent with the temporal averaging of
gradient information inherent to acceleration, while still remaining fully within the accelerated
framework, bypassing the linear operator inversion required in the Sobolev framework. We
present two different strategies for obtaining the best of both.

3.5.1. Adding velocity diffusion. A simple way to incorporate spatial averaging in the
acceleration process would be to heuristically add a diffusion term in the velocity update. For
a concrete example, in the conserved flowable-mass acceleration strategy for active contours
outlined in section 3.2.3, we could augment the acceleration PDE (3.13) as follows (the coupled
density evolution PDE would remain the same):

acceleration . advection friction  diffusion
— gradient — ~—__ A
oV NPT s <V ac> oV k4l OV

N , I o5 )os T 1 VTt T

where 7 > 0 represents a tunable diffusion coefficient. Large values of 7 would give preferential
treatment to coarse scale deformations of the evolving contour during the early stages of
evolution, with finer scale deformations gradually folding in more and more as the contour
converges toward a steady state configuration.
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Such a coarse-to-fine behavior would be consistent with that of a Sobolev active contour.
In fact, diffusion over a finite amount of time is similar to convolution with a smoothing kernel,
which is indeed one way to relate the velocity field of a Sobolev active contour with the simple
gradient field fN. As such, the incorporation of a diffusion term into the acceleration PDE
is the closest and most direct way to endow the accelerated active contour with additional
coarse-to-fine Sobolev active contour behaviors without directly employing Sobolev norms in
the definition of the kinetic energy (which would require full linear operator inversion at every
time step during the accelerated flow, just as in actual Sobolev gradient flows).

A key difference of such an added diffusion term, compared to Sobolev active contours, is
that this smoothing process of the gradient field along the contour is carried out concurrently
with the accelerated contour evolution itself, rather than statically at each separate time
step. As such, if the diffusion coefficient 7 is small enough to allow stable discretization of
the PDE with the same time step dictated by the other first-order terms, then no additional
computational cost is incurred. As the diffusion coefficient is increased, however, the discrete
CFL conditions arising from the added second-order diffusion term will begin to dominate in
the numerical implementation of the PDE and require smaller and smaller time steps. This
could significantly increase the computational cost as more and more numerical iterations will
be needed to simulate the same amount of accelerated flow time.

Given that a sufficiently small amount of diffusion costs essentially nothing in the PDE
discretization, however, it doesn’t make sense to ignore this benefit from an optimization
standpoint. Methodical schemes guided purely by numerical considerations can be devised to
add velocity diffusion coeflicients that will maximally boost the regularity of the accelerated
evolution with minimal or no added computational cost. Such free gains from small amounts
of diffusion may be stretched the farthest by allowing variable diffusion coefficients which can
be chosen based on evolving CFL conditions relevant to the PDE discreteizations prior to
considering the added diffusion terms.

3.5.2. Incorporating mass potential energy. An independent approach that would add
spatial regularization to the acceleration process, again without imposing any added regularity
to the converged result, would be to attach not only a kinetic energy term to the artificially
attributed mass, but also an extra potential energy term U,,,ss which favors a smoother
evolution of the mass itself (and therefore of the object to which the auxiliary density function
is attributed). This opens up a whole new design feature for accelerated PDEs which would
allow us to incorporate coarse-to-fine evolution properties which are qualitatively similar to
those of Sobolev gradient flows, but without the heavy computational cost. We foresee at least
two criteria that should be satisfied when designing the mass potential energy term U,,5s.

1. The minimum achievable mass potential energy should be independent of the config-
uration of the original variable being optimized (for example, in the active contour
case, it should achievable for any possible contour shape) so that the final converged
result, which will correspond to a locally minimal total potential energy, will not be
influenced by the added mass potential energy term but only by the original potential
energy term to be minimized. As such, the incorporation of U,,qss will affect only the
accelerated evolution dynamics, without changing the original energy landscape.

2. The first variation 0U,,4ss should not contain second- or higher-order derivatives of the
density function p (nor of its flow velocity V') which would, like the diffusion strategy
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described earlier, impose stronger discrete time step restrictions on the numerical

discretization of the accelerated PDE system.
In order to work out a concrete example, we revisit the accelerated active contour model
using the conserved flowable mass strategy outlined in section 3.2.3, in which we suggested
that the evolving contour may be thought of as a moving container of fluid (the attributed mass
variable), and that the fluid is pushed around by the moving container while also flowing within
the container. If the fluid is compressible, then its density can vary during this evolution,
otherwise, it must remain constant, which undermines the flexibility of this scheme compared
to the simpler constant density scheme already developed beforehand in section 3.2.2. Yet we
can still give physical intuition to the more flexible flowable mass model, even if we consider
the mass as an incompressible fluid. We simply imagine that the fluid has a variable height at
each point within its container (in this case, along the contour). This allows us to naturally
define a potential energy for the mass configuration, by relating the density function p to the
fluid height.

Using this fluid height model, we may construct the mass potential energy connected with
an arc length increment ds along the curve by first noting that the associated mass differential
is given by dm = pds and then equating the mass density p along the contour to a constant
fluid density o scaled by the local fluid height k. Given that the average height of the fluid
column over ds would be h/2, we may write its potential energy as % g dm, where g represents
a gravitational constant. Combining these relationships yields

du =L plds
20
which, if we choose o = 1 (without any loss of generality since g can be chosen arbitrarily),
gives the following expression for the mass potential energy:

L,
g/pds.
c 2

However, while this satisfies our second criterion (its first variation will not involve second-
order derivatives of p or of the flow velocity V'), it fails our first criterion. To see this,
note that the lowest potential energy mass distribution for a given curve (subject to the
conservation constraint) is achieved by the constant height distribution p = %, where M
denotes the constant total conserved mass and where L = fC ds denotes the total arc length

of the contour:
min /1 2ds | = Q%
\9 ) 2P ) T e

From this expression, we can see that scaling this potential energy by the length of the curve
will make the minimum achievable potential energy §M 2 become independent of the curve
C. This leads to the following candidate for a mass potential energy which also satisfies our
first criterion:

1
(3.15) Unass = gL/ —pds.
c 2

Adding this to the purely contour based potential energy (section 3.2.1), which does not
depend on the artificially added mass, and recomputing the Euler-Lagrange equations for
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the generalized action integral (3.1) will yield a new system of accelerated PDEs in which
the gradient forces influencing the acceleration will depend both on the mass distribution as
well as the functional to be minimized. Since the minimum constant density mass potential
can be achieved for any contour configuration, we know that at steady state, we will have
a constant mass density. If we initialize with a constant mass density as well, then the
acceleration dynamics will favor (but not constrain) moving the mass along evolution paths
that keep the density spatially constant. Translations or uniform rescaling of the curve would
therefore become preferential evolutions, just as for Sobolev active contours, especially with
larger choices of the tunable gravitational constant g.

3.6. Incorporating stochastic acceleration terms. Finally, the accelerated PDE frame-
work, unlike the gradient descent PDE framework, offers a numerical opportunity to introduce
random noise into the evolution process without destroying the continuity of the evolution
process nor of the evolving object. For example, in the active contour acceleration scheme
(3.13), we could replace the added diffusion term suggested in section 3.5, with a stochastic
term as follows:

acceleration ) advection friction .
gradient ——~— | A~ noise

’517_>\/-c2t’f*2 % v OO\ Rkt s 9C _ v NN
a -, _<'as>as_t VL G = VNN,
where W represents samples drawn from a random noise process and 7 is a positive tunable
coefficient (similar to the diffusion coefficient in section 3.5). Since the noise is added to the
acceleration, it gets integrated twice in the construction of the updated contour (or surface)
and therefore does not immediately interfere with the continuity nor the first-order differ-
entiability of the evolving variable. As such, both the velocity V itself, as well as the unit
normal N of the contour, remain continuous for the the coupled contour evolution equation.
The contour therefore maintains regularity (at least short term). Furthermore, since upwind
differencing methods are utilized in the numerical calculation of %—‘8/ in the acceleration advec-
tion term, discontinuities in the first derivative of V' do not pose a problem as only one-sided
derivatives are required. In the case of shocks, a viscosity solution will be approximated by a
proper discretization.
Adding random noise to a standard (nonaccelerated) gradient descent contour PDE,

velocity .
Py gradlent noise
ac = =
= TN +7W,

ot
on the other hand, has never been a viable option since noise added directly to the velocity is
integrated only once, which does not maintain continuity in the unit normal N of the evolving
contour. As such, the contour would immediately become irregular. As such, accelerated
PDEs open up a whole new avenue for the inclusion of stochastic terms (as often exploited
in finite dimensional optimization problems) which offer an additional strategy for increased
resistance to spurious or shallow local minimizers. The potential benefit of such a random
noise term would be to provide a second and independent mechanism (beyond the acceleration
itself) to perturb the optimization flow away from saddle points or shallow minimizers. Once
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kinetic energy has been accumulated, the added benefit of such a term is likely to be negligible.
However, unlucky initializations (assuming zero initial velocity) near local minimizers or saddle
points, could benefit from a noise driven term in the early stages while momentum is just
begining to accumulate. Note that such a strategy is not the same as SGD, and should not
be confused with the recently developed PDE methods in [13, 14] which specifically improve
upon stochastic gradient descent techngiues used in training deep neural networks.

4. lllustrative results. In this section we illustrate the performance improvements of re-
formulating an existing active contour model into the accelerated framework and demonstrate
favorable performance improvements even when comparing it against recent alternative global
strategies such as Chambolle-Pock. As the scope of this paper is not to propose or invent
a particular active contour model, but rather an accelerated framework that can apply to
variational models, we keep the 2D test images simple, such that popular binary region based
active contour models (such as Chan-Vese) are well suited to the segmentation tasks. We
demonstrate that these models, however, when lacking sufficient regularity (in this case the
arc length penalty), become prone to getting trapped within unwanted local minimizers when
implemented as standard gradient descent active contours. We show that even strategies
such as Chambolle—Pock, which seek to minimize the global energy, still become numerically
trapped within local minimizers when used with matching regularity. And while these al-
ternative global minimizers can perform admirably on special classes of binary region based
active contours they are not extendable with the same generality as the PDE acceleration
framework presented here. We will see in these illustrative examples that simply applying the
contour acceleration is sufficient to fix the sensitivity to local minimizers, drastically speed
up the convergence of the region based active contours, and without the need to abandon the
active contour framework in favor of less generalizable global convex optimization methods.
We also provide example extensions of the acceleration framework for nonconvex problems,
particularly the case of variational 3D reconstruction, where we show not only a dramatic
speedup in terms of runtime but also a better converged result for both toy and real data.

4.1. Acceleration versus gradient descent. In Figure 3 we see three different initial
contour placements (top, middle, bottom) evolving from left-to-right via the gradient flow
PDE (2.2). Each gets trapped within a different local minimizer due to noise, all of which lie
very far away from the desired much deeper minimizer along the rectangular boundary. Of
course, stronger regularizing terms could be added to the active contour energy functional to
impose smoothness on the contour, thereby making it resistant to noise. However, the point
of this experiment was to create an energy landscape littered with literally tens of thousands
(perhaps even hundreds of thousands) of local minimizers in order to demonstrate the effects
of acceleration. Furthermore, stronger regularization would sacrifice the ability to capture the
sharp corners of the rectangle and increase the computational cost due to smaller resulting
step size constraints in the PDE discretization.

We avoid both of these sacrifices by instead using the exact same active contour force f
within the accelerated PDE system (3.8). In Figure 4, we see the effect of applying an acceler-
ated contour evolution scheme with the same initial contour placements and same energy func-
tional (no additional regularizing terms). In all three cases, the accelerated PDE system pushes
the contour past the noise, driving it toward a more robust minimum along the rectangle edge.
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Figure 4. Accelerated active contours flowing past local minima.

In Figure 5 we see this same dramatic difference on a real seismographic image where
we attempt to use an active contour to pull out the rather noisy “core” of the recorded
seismograph line. Along the left column we see four different initial contour placements, where
the first three elliptical initializations, which are far from the desired segmented result, pose a
considerable challenge to a classical gradient descent active contour. Minimal regularization
is allowed here given the spikey nature of the signal, at least in cases where we wish to capture
this fine scale level of detail.
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Figure 5. Nonaccelerated (middle) versus accelerated (right) active contour results for the same four
initializations (left) on a seismograph image. Cost functional values underneath.

In the middle column, we see the converged active contour results based on the standard
gradient flow version of the evolution given by (2.2). Only in the last (bottom) case, is the
segmented result reasonable.

In the last column, we see the converged result of the same active contour energy F
and force f evolved using the accelerated PDE system (3.8). While there are very subtle
differences in the final results (as can be see by the slight differences in the converged energy
value), all four are nonetheless reasonable now even from the fist three challenging initial
contour placements.

4.2. Comparison with convex relaxation. In Table 1, we compare our method, an ac-
celerated version of active contours (ACs) to a global convex energy minimization method
Chambolle/Pock (CP) [8], and find comparable robustness to global methods but with a sig-
nificant computational savings. We choose the regularity such that standard ACs converge to
a local minima (not the global) over multiple different initializations, so that a better method
is required to optimize the energy. The regularity is also chosen with the performance of CP
in mind for the comparison, as CP also requires a sufficiently high regularity, although lower
than standard ACs, to segment the region.

We run all AC and CP experiments to convergence and measure the computational time
and final energy for 3 different initial segments at 4 different resolutions. The experiments
were a square close to the desired segmentation—“near square”; a square far from the desired
segmentation—“far square”; and a binary threshold of the image—“threshold mask.” In
Figure 1 we present a scaled down noisy binary image of resolution 1120 x 1120 with the
final segmentation s for both methods. Performance results are provided in Table 1. This
comparison shows that our method consistently obtains comparable local optima over different
initializations, similar to CP, but with less computational time. Furthermore, our method
applies more generally to nonconvex problems, where we would expect similar robustness in
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Table 1
[Left]: PDE acceleration (AC) offers a comparable level of robustness to initialization as global conver CP
in lower computational time. (Right): Visual comparison for the results with greatest energy difference in CP
and AC shows that the energy differences are nearly in-perceptible.

AC
Near Square Time CP (sec) Time AC (sec) Energy AC Energy CP
Res: 280 x 280 0.176 0.042 5.1960E4+08  5.1864E+08
Res: 560 x 560 2.34 0.11 5.2120E408  5.0995E+-08
Res: 1120 x 1220 20.009 1.167 5.2120E+08  5.0726E+08 &
Res: 2240 x 2240 159.76 14.43 5.2016E4+08  5.0563E+08
Threshold Mask
Res: 280 x 280 0.174 0.064 5.1680E408  5.2250E+08
Res: 560 x 560 2.24 0.204 5.1680E408  5.0918E+08
Res: 1120 x 1120 20.438 1.055 5.1569E4+08  5.0714E+08
Res: 2240 x 2240 159.178 14.606 5.2016E4+08  5.0516E+4-08
Far Square
Res: 280 x 280 0.771 0.278 5.1980E408  5.1860E+08
Res: 560 x 560 8.726 1.43 5.1980E4+08  5.0900E+-08
Res: 1120 x 1120 91.197 14.65 5.2067E4+08  5.0691E+08
Res: 2240 x 2240 772.342 69.48 5.2016E4+08  5.0609E+408 5=

Figure 6. (Left): Initial threshold initialization of noisy square; (middle): Converged segmentation for CP;
(right): Converged segmentation for accelerated AC.

our method, and where CP is not as applicable; see 3D stereoscopic segmentation experiments
in section 4.3.

In Figure 6 we present the case of a segmentation based on an initial threshold of the
image; this is a similar experiment to the threshold mask discussed earlier, but with a signif-
icantly lower arc length penalty than those used in Table 1. Here we show another advantage
of the accelerated ACs method in needing less regularization for segmentation. In Figure 6
and Table 2 the numerical implementation of CP becomes trapped whereas the accelerated
version of ACs is able to push past the local minimizers in the image.
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Table 2
Performance numbers for threshold segmentation CP versus accelerated ACs for Figure 6.

Image resolution  Arc penalty Iterations CP energy AC energy
1120 x 1120 1.00E+4 600 8.14E+49 8.07E+9

Figure 7. Three double tori reconstructions using gradient descent stereoscopic segmentation. (Left) torus
used 16 images and 0 area penalty. (Middle) torus used 18 images and a moderate area penalty of 150. (Right)
torus used 18 images and a high area penalty of 500. Notice the modest feature loss in the final image.

4.3. Application to nonconvex problems. For the case of nonconvex problems, we ex-
tended the gradient descent based stereoscopic segmentation from [61] to an accelerated ver-
sion using the framework presented in this manuscript. We chose this model because of its
extreme nonconvexity. The primary reason for this is that the projections in stereoscopic
segmentation must be applied to both the occlusion boundaries and the evolving structure.
The gradient descent optimization used in this stereoscopic segmentation model is also prone
to getting trapped in local minima and demonstrates the potential benefits of PDE accelera-
tion.

For the first experiment, we consider the case of a double torus with an initial bounding
region that completely covers both torus’ holes. In this synthetic experiment (see Figure 7),
the gradient descent stereoscopic segmentation gets trapped in a local minimum and is unable
to push through the holes. Adding additional camera views and some regularity does improve
the results but with large local minimizers still remaining. While adding a much harsher area
penalty can remove the local minimizers it does so at the expense of image features.

A similar experiment by Kolev, Brox, and Cremers [26] compares a double torus recon-
struction using stereoscopic segmentation against a convex probabilistic fusion scheme that
combines probable 3D shapes and observed color information. In [26] the authors astutely
note that while the approximation in [63, 61] is more faithful it is not globally optimizable.
However, by extending the nonconvex approach in [61] using PDE acceleration we are able to
push through the local minimizers without the use of additional constraints on the geometry
or even additional regularization.

Comparing the results in Figure 8, the accelerated PDE method is able to push through
the local minimizers with ease and not only achieves a far better result but also converges
far faster than the gradient method. A numeric performance comparison between the two
methods is provided in Table 3.

The second reconstruction we present is of a wooden horse using 32 different 640 x 480
resolution images; see Figure 9. Comparing the gradient descent (bottom) and accelerated
PDE (top) schemes, we demonstrate faster convergence for the accelerated PDE scheme as
well as better robustness to local minimizers. Unlike in the gradient PDE method we are able
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@D

Gradient PDE

Accelerated PDE

0 500 1000 2000 4000

Figure 8. Comparison of stereoscopic segmentation for gradient PDE method versus accelerated PDE
method at different iteration steps 0, 500, 1000, 2000, and 4000 iterations, respectively. The gradient method
gets trapped by local minimizers, in this case the bounds of the torus, and is unable to form the holes without
heavy regularization. Note that the initial start for both methods is the ellipsoid. The area penalty was fized at
0 and this experiment used 16 image views of the tori for the reconstructions.

Table 3
Performance benchmark of gradient versus accelerated method; computations were done on an Intel 6 Core
17-5930K.

Iterations to converge: Runtime (sec): Final energy

Gradient descent 3653 196.44 2.09E+10
PDE acceleration 1630 66.16 2.90E+09
Table 4

Performance numbers for gradient descent versus PDE acceleration of variational 3D reconstruction. Note
that increase in energy is due to the methods not capturing the entire horse volume.

Gradient descent Acceleration
Area penalty Iterations Runtime (sec) Final energy Iterations Runtime (sec) Final energy
300 751 27.00 1.099E+410 205 8.307 9.381E4-09

to capture the entire horse volume and do not lose smaller features such as the horse’s thin
legs.

Imposing a high area penalty on the horse reconstruction creates local minimizers within
the horse’s narrow legs. Gradient descent stereoscopic segmentation then struggles to push
down the legs and reconstruct the entire horse volume. The accelerated version progresses far
faster and does not suffer a penalty even under the same heavy regularization.
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Figure 9. (Top): Gradient descent driven variational 3D reconstruction gets trapped in local minima when
strongly regularized. (Bottom): PDE acceleration is able to successfully shoot past local minimizers under a
higher area penalty. Note average convergence time for PDE acceleration is almost three times faster than
gradient descent. Iterations are given at the bottom with performance results found in Table 4 on the previous

page.
5. Appendix: Derivations of various numbered equations.

5.1. Calculation of (3.3). Differentiating (3.2) with respect to the arc length parameter
s yields

0*C aoz oT aﬁ 8]\7 Oa op
< Ds,

kN —kT

and differentiating T' = % yields

T 29C 9
ot 0t os ot H

ac 92C ac 00 oo ac
_ owp H H 8p6t op  opot op

[ T 11" ] T ]
0*C 0*C 0%C opB
= -T T)|=(z=——% " N|N=|—+ N
Dot (asat ) (asat ) (as + O‘“)
which gives the first part of (3.3) with the second part due to the rotation relationship between
T and N.

5.2. Calculation of (3.9). Letting C(p,t) denote a parameterization of the evolving curve
C with a time-independent spatial parameter p and with s denoting the time-dependent arc
length parameter we compute (ignoring temporary boundary terms when applying integration
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by parts and assuming a closed curve so that spatial boundary terms cancel)

5/i 'r AR2E U)dt 5/i<[;2k P G ds — Akt U>dt
) /15 / L oc ac foc
—Jo 0 2 k ot
_/1/) /1 o (90500

Jo B\ Jy 2 ot

_/1p /1 k+180

— \kt?F— 1IJ> dt

el o[ 5l) =25

242k—1
5C+¥“1§?5§i%?1 Mﬁ/fW?NM%ﬁ
_ 18 1 tk+1820 tkac
—Jo Kk ot?

242k—1
M%(t;gtH H % (HZ? 20» mpwtp/ﬂv.w@ "
C

= E —p ; 3 Op B Bpat Bs

aC ||I?
ot

19 oC k2 th—2
[ e _geioc_ (B0 aoyoc o (1jacfoc RV
ot? t ot 0sot 0s ) Ot  0s \2| 0t| Os p

Set to zero for Euler-Lagrange equation

- 0C ds dt.

5.3. Calculation of (3.7). Decomposing the acceleration Cy; into tangential and normal
components yields

2 24k—2
ac 22 f

0*C k+180_<320 80) oC (620 80) H

o2~ t ot \osot 0s) ot \osot 252 T,
2 21k—2
_k+10C <aa—6)80 ( ) a+5 N+/\kt fN,
Tt ot p
o*c k1 da dox i k+1 op
(e () ()
02C kE+1 8a o+ B2 AEPRRf
aﬂ'N__<t _5>5_ y "t

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/03/21 to 71.235.42.206. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

ACCELERATED OPTIMIZATION IN THE PDE FRAMEWORK 2055

Now inserting these acceleration components into (3.5) yields (3.8):

8&__("’“ 2-/3) —685+5<8ﬂ+a>_<—"3+1—28‘)‘+25ﬁ)

ot t t 0s
0 _ (Al e, )5-@2;52,€+”"‘2’f:‘2f_a (52 +an).
2N
_ —@5— () + (;52 - 2042> Kt Mff_Qf

5.4. Calculation of (3.9). Assuming we represent the evolving curve C(p,t) as the zero
level set of an evolving function ¢ (z, t) and letting §(x, t) denote an evolving spatial extension
of the evolving normal speed function 5(p,t) along curve, then we have

~

Y (C(p,t),t) =0 and B (C(p,t),t) = B(p,1).

Differentiating with respect to t yields

o 80 op oc 9B
N +V¢-— =0 and e + V3. 5 =
Extending the contour evolution %—? = BN to other level sets as BN , where N = —%

(noting that this convention for the extension of the inward unit normal requires that the
level set function be negative inside the contour and positive outside), yields

BV
VY|

a5 _op
ot ot

‘” — AVl and L VB

which, after substitution of % using (3.8) results in the level set version of the system in (3.9).

5.5. Calculation of (3.12). Let us introduce, along with the mass density p and its
internal flow speed v with respect to the arc length parameter s, corresponding variables for
the mass density u(p,t) and internal flow speed £(p,t) with respect to a time-independent
contour parameter p. These pairs of densities and internal flow speeds are related to each
other through the parameterization speed ||C,|| of the contour as follows:

(5.1) p=pllCpl| and v=¢&|Cp|| (with matching flux expressions pé = pv).

Differentiating with respect to t, yields the following relationships between the density and
flow speed evolution as well:

(5.2) te—nCrs-Cs = pi |Gyl and v —vCis-Co =& |Gy
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Applying these substitutions to the kinetic energy (3.10) and continuity constraint (3.11)
yields

1
1
T = / ol |Cy + € Cp||*dp  with mass continuity constraint ;4 ( §), =
0

We plug this into the generalized action integral (3.1) with a Lagrange multiplier function
A(p,t) and compute the first variation:

tk+1 1
5/ T A2 tR- 2U> / A (e + (1€)p) dp dt
0
tk-‘rl
/ / 1G4 ECI + A (e + (u6),) dp — AKEF15U di

tk’+1 k+1
= [ [ 35 el ot oncir ey st ecy)

+ (et (€)p) OA + X0 (e + (1E)p) + ALt TLf (6C - N) || G| dp it
%,_/

tk+1 k+1
// G+ €GP o+ S (O €Cy) - Gy 66 — N — 0y (1)

k+1 tk+1
— (k;uah+50)>-&7—<k;@«%+§6@>-5C+Am%_¥A%50W%H@dt
t p

1tk+1 tk-i-l
//( E G+ €GP A= 0e) dnct s (SCi 660G, ) o6

k+1 C C
— k,u( (pe + (1€)p) G t+EC
—————

=0
k+1 B /\th’“QfN>

T (Ce+E6Cy), + & (CL+ECy),

+ (G EGY) -5C dp dt.

The optimality conditions with respect to variations 6§ and du, respectively, yield

tk+1 9 1tk+1 9

which, when combined, give the following evolution for the Lagrange multiplier:

tk+1 1 9 5
n=E (Ao ca - (e + ¢ -6cy)

k
thtl /1 2 2 1tk i 2
:T 5”01;4-1)03” _(”UCSH +Ct'”CS) 2 k (HCtH -V )

We eliminate the Lagrange multiplier by equating Ay, and A, to obtain the following internal
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flow speed evolution:

1 ¢+l ) ) tht1
0=Atp — Apt = OO (||Ct|| —v )p— (k (Ct+fcp)'cp> ;
¢

OZT Ct~Ctp—vvp—Ctt~Cp—£tC’p~C 2€Ctp C Ct Ctp—i(Ct'FgC)
drop cancel cancel
k —1— 1
OZHCpH —vvg — Cy - C (&HC || —1—2}0155'03)1—1)0153'05— (Ct+UC ) Cs |,
drop v by using (5.2)

k+1
Ctt+U Ct+UC) +1—(Ct+vcs)> - Cs

k+1
(Ctt + UCts Ct> . CS — <U5 + —:> v.

Finally, the optimality condition with respect to the curve perturbation dC' yields the following
acceleration equation for the contour

k+1 A2 th—2
OZCtt—f—ftHCpHCS—FUCtS-FU(Ot-i-UC) +L(Ct+ C) 7fN,
—— p
v —vC4ts-Cls
k+1 k2 th—2
0=Cy+ (v —vCys - Cs) CS+UCtS+U(Ct+vCS)S+7:— (Cy+vCy) — ; fN,

kE+1
0= (C’tt—i-v (Cr+vCy), ++(Ct+vC)+ths>

-~

some vector

1 24k—2
(Ctt+v Cy+vCy),s +k;r(ct+v0)+vcts) -cg) cs—mpr,

its tangential component

Y
|

Ctt—i-’UCt—F’UC) +T(Ct+UC)+UCtS P

its normal projection

Ciu + 2v Cyg

SS

1 24k—2
k+ t)'N_)\kt f.
P
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5.6. Calculation of (3.13). Plugging the normal and tangential (unconstrained) acceler-
ation components from (3.12) into (3.5) yields

ar = Cy - T+B(Bs + ar)

free
Cis-N Css N i 1 Cy N
— PN + 1~~~ _
B = | —2v (B + ar) —v® "k — B4+t 2/ a(fBs + ak)),
Ci-N (from (312)
kE+1
= —(2v+0a)Bs— (a+v) K — %ﬁ + Athk*Qi,
p
Cis T Cy T
—— k+1 2
vp=—Cy-T—v (as — BK) —T( a 4v) — vug (from second part of (3.12)),

ar+vy=(Cy - T+ BBs + affk) + (Ctt.Tv(asﬁm)vvsk;";l(aqu)),

(00, = B85 — (0 + 0) v+ (0 +0) B — "L (),

Cis'T
pt+ (pv)s = —p (as — BK) (from (3.11)).

We can now rewrite the system as follows,

oy = Ctt'T—f—ﬁ(Bs—f‘OUi),
——

free

B =—PBsv — (a+v)Bs — (a+ v)2 K — %ﬂ + /\thk2£,

kE+1
t

(a+v), =—(a+v),v+ pfs + (a+v) fr — (a+v),

pt = —psv — p(a+v)+ ppk,

where we can see that freedom to choose Cy;-T is equivalent to freedom to choose the evolution
of a. As such, we may conveniently choose a; = 0. Assuming that we start out with zero
initial velocity (aw = 8 = 0) this would mean « remains zero, yielding the following simplified
System:

1
Bt 4+ vBs = —v (Bs + vk) — L—: B+ )\k2tk—2i’
)
k+1
v +vvs = B (Bs + vK) — il v,

pt+ops = p(Br —vs).

Finally, we may transform the system by defining V' = vT+ N to avoid the explicit calculation
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of curvature. Noting that

V:e:(UT+BN)5:(US_BH)T+(/BS+UH)N

and, substituting o = 0 into (3.3), to obtain

Ty = pBsN and Ny = —f,T),

we may compute

Vi= @I+ BN), = (v — BBs) T+ (Bt + vBs) N

k+1
t

= | B(Bs + vk) — vvs — v—LB8s |T

~~
vt

kE+1
[ —o(Beom) — By - T+ Ak%“ﬁ +uBs | N

Bt

=—v((vs—Br)T + (Bs + vK) N) — (UT+5N)+<)\k2tk—2f>N
Ve - P

k+1

as well as

1]

2]

(10]

pt+ _v_ps=p (B —vs).
v.T Vel
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