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Tracking Using Motion Estimation With Physically
Motivated Inter-Region Constraints
Omar Arif, Ganesh Sundaramoorthi*, Byung-Woo Hong, and Anthony Yezzi

Abstract—We propose a method for tracking structures (e.g.,
ventricles and myocardium) in cardiac images (e.g., magnetic
resonance) by propagating forward in time a previous estimate of
the structures using a new physically motivated motion estimation
scheme. Our method estimates motion by regularizing only within
structures so that differing motions among different structures are
not mixed. It simultaneously satisfies the physical constraints at
the interface between a fluid and a medium that the normal com-
ponent of the fluid’s motion must match the normal component
of the medium’s motion and the No-Slip condition, which states
that the tangential velocity approaches zero near the interface. We
show that these conditions lead to partial differential equations
with Robin boundary conditions at the interface, which couple the
motion between structures. We show that propagating a segmen-
tation across frames using our motion estimation scheme leads to
more accurate segmentation than traditional motion estimation
that does not use physical constraints. Our method is suited to
interactive segmentation, prominently used in commercial appli-
cations for cardiac analysis, where segmentation propagation is
used to predict a segmentation in the next frame. We show that
our method leads to more accurate predictions than a popular and
recent interactive method used in cardiac segmentation.

Index Terms—Cardiac magnetic resonance image (MRI) seg-
mentation, image registration, motion estimation, tracking.

I. INTRODUCTION

A CCURATE segmentation of deforming structures from
medical image sequences [e.g., cardiac magnetic reso-

nance imaging (MRI)] is an important step in many clinical
applications that study structure and function of organs. While
many methods have been proposed to segment a deforming
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structure by dividing each frame based on image intensity statis-
tics and incorporating training data (see Section I-A), it is some-
times easier to exploit the temporal coherence of the structure,
and apply a tracking framework. Onematches a current estimate
of the structure of interest at time to the image at time
to detect the structure at time . This requires an accurate
registration between images.
One difficulty in registration stems from the nonuniqueness

of registrations that are able to explain two images, and there-
fore, regularization is needed to constrain the set of possible
solutions. Typically, global regularization, uniform regular-
ization across the whole image, is used. However, the image
consists of many structures, each moving with different mo-
tions/deformations, and global regularization smooths across
multiple structures. Therefore, motion/deformation information
from surrounding structures is used in the registration estimate
within the structure of interest. This leads to errors in the regis-
tration and therefore also, in the structure segmentation. It may
seem that this problem can be avoided by registering only the
organ at time (not the entire image) to a subset of the image at
time , thus regularizing only within the organ. However,
that approach is problematic as the background registration
helps limit the possible registrations of the organ of interest,
aiding the registration of the organ. See Figs. 6 and 7 for an
experiment.
In this work, we derive a new motion estimation method that

estimates motion separately in each structure by performing
only within structure regularization (so that motions from het-
erogeneous structures are not mixed) while satisfying physical
motion constraints across the boundary between a fluid and a
medium. Specifically, we model the physical constraints that
the motion of a fluid and a medium at the interface is such that
the normal components of the motions are the same, and the
No-Slip condition, which states that the tangential motions ap-
proach zero at the interface.
Our new motion estimation scheme can be used in struc-

ture segmentation from image sequences. Given the initial seg-
mentation in the first frame, our algorithm propagates the seg-
mentation to the next frame. Although our method is not re-
stricted to a particular imaging modality or structure, we focus
on an application where the physically motivated considera-
tions are natural—segmentation of the left (LV) and right ven-
tricle (RV), and the surrounding heart muscle from cardiacMRI.
RV and LV segmentation are important and challenging prob-
lems. In fact, there were recent challenges for segmentation of
the LV [54] and RV [28], held in the course of the Medical
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Image Computing and Computer Assisted Intervention Confer-
ence (MICCAI). Our new motion estimation scheme leads to
more accurate segmentation of the LV and RV than motion es-
timated with global regularization.
The main motivation for our new method is segmentation

propagation in interactive segmentation of image sequences.
Segmentation propagation predicts the segmentation in the next
frame from the current estimate. Interactive methods are the
norm in commercial medical applications for cardiac MRI as
full automation (see Section I-A) is still at the research stage.
Our new physically viable motion estimation scheme leads
to better segmentation propagation than recent commercially
available software for cardiac segmentation.

A. Related Work: Cardiac Segmentation

We briefly review the literature on cardiac segmentation. See
[39], [59] for a more thorough review.
There are two types of methods for cardiac segmentation,

fully automatic and interactive. Early methods for fully au-
tomatic cardiac segmentation use image partitioning algorithms
(e.g., active contours [22] implemented via level sets [34], graph
cuts [4], or other optimization methods [5]), which optimize en-
ergies that integrate basic image features such as edges [40],
intensity statistics [10], motion cues [14], and smoothness of
the partition. These methods partition the image into regions of
homogeneous statistics, however, they do not always select re-
gions that correspond to physical objects/structures.
One way to improve basic partitioning algorithms is to use

training data to construct a model of the heart and then use the
model to aid segmentation. Some approaches (e.g., [19], [25],
[50], [52], [56], [57], [60]) make use of active shape and ap-
pearance models [8], [9] where manual landmarks around the
boundary of the object model the shape, and texture descrip-
tors describing a neighborhood around the landmark are used
to model object appearance. Landmarks and descriptors allow
for the use of PCA to generate a statistical model from training
data. More precise models of shape are based on performing
PCA of segmented objects using mesh-based approaches [16]
or level set representations [38], [51]. These methods construct
static models of the heart. However, the heart is a dynamic ob-
ject, and thus, in [44], [58], dynamic models of shape are con-
structed by considering the shape from multiple frames in the
sequence. Once the heart model is constructed, object segmen-
tation is performed by fitting the model to the image. This can be
done in a number of ways, the most common method (e.g., [6],
[13], [51]) is to restrict the optimization of the energies based on
basic image partitioning to the shapes determined by the para-
metric shape model. Alternative approaches register an atlas,
which has both shape and appearance information, to the target
image, thereby determining the object segmentation [21], [24],
[29], [60]. Multi-atlas approaches (e.g., [1], [21], [61]) register
several atlases to a target image and fuse the results.
The above approaches aim at fully automated segmentation.

Although fully automatic segmentation is the ideal goal, these
methods are not accurate enough, especially when there is devi-
ation from the training set (e.g., in cases of disease), to be used in

many cardiac applications (e.g., [23], [26], [27], [30], [31], [37],
[48], [51], [52], [59]). Therefore, in commercial applications,
interactive approaches to segmentation, in which user input is
integrated, are the norm. Various computer vision techniques
(e.g., [3], [12], [55]) have been designed to incorporate user
specified seed points. These methods modify energies based on
simple image features to incorporate constraints from the seed
points entered by the user.
Other interactive methods allow for a manual or semi-auto-

mated segmentation of the first frame in the cardiac sequence
and then attempt to propagate the segmentation to subsequent
frames, thereby predicting a segmentation that needs little in-
teraction to correct [33], [47]. Several methods propagate the
initial segmentation (e.g., by registration [33], [47]) and/or use
manual segmentation in the first frame as initialization to an au-
tomated segmentation algorithm. Several commercial software
for interactive heart segmentation have been designed. For ex-
ample, the recent software Medviso [18], [49] allows the user
to input an initial segmentation, which is then propagated to
subsequent frames in order to segment various structures in-
cluding the ventricles and myocardium. The software also al-
lows for other manual interactions to correct any errors in the
propagation. The algorithm is a culmination of many techniques
including registration to propagate the segmentation as well as
the use of shape priors constructed from training data.
Our contribution lies in improving the prediction step that

is present in interactive methods for cardiac image sequence
segmentation. We derive a segmentation propagation method
that is more accurate than existing schemes.

B. Related Work: Registration

We construct a segmentation propagation scheme by deriving
a physically motivated registration method. Therefore, we give
a brief review of recent related work in registration.
The goal of registration is to find pixel-wise correspondence

between images. Regularization is needed as multiple registra-
tions can explain the images. The pioneering work [20] from
computer vision uses uniform smoothness applied to the en-
tire image domain (global regularization) to estimate registra-
tion under small pixel displacements. Larger deformations com-
puted using global regularization that lead to diffeomorphic reg-
istrations, a property of a valid registration in typical medical
images, have been considered by [2], [7], [53]. For some med-
ical images (e.g., cardiac), there are multiple structures each of
which have different motion characteristics. Global regulariza-
tion across adjacent objects (mixing heterogeneousmotion char-
acteristics) is not desired in this case. Moreover, there are phys-
ical constraints between adjacent regions that can be exploited.
In cardiac applications, the ventricles and the heart muscle (my-
ocardium), which are a fluid (blood) interacting with a medium,
are such that the normal component on the boundary of the mo-
tions (velocity) of both structures are equal. The previous con-
straint arises from the fact that the ventricle and the surrounding
muscle do not separate during motion. Further, the No-Slip con-
dition [32] from fluid mechanics for viscous fluids states that
the motion of the fluid, at the interface of a medium, relative
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to the boundary is zero, i.e., the tangent component of the mo-
tion along the boundary is zero. The scale at which this happens
may be small compared with the resolution of the imaging de-
vice, and thus we allow an option for the tangent components to
be arbitrary across the boundary.
Recent work has considered nonglobal regularization. In

lung registration, the lung slides along the rib-cage, and the
motion of both these structures is different and thus global reg-
ularization is not desired. In [35], [36], [45], [46] anisotropic
regularization is used to favor smoothing in the tangential
direction near organ boundaries. In [42], [43], Log-Demons
[53] is generalized so that smoothing is performed on the
tangent component of the registration within organs, and the
normal component is globally smoothed. Our approach differs
as it is motivated by the physical constraints of fluid motion
present in the heart. Further, our method applies regulariza-
tion only within homogeneous structures, different than [42],
[43], which smooths the normal component across structures,
mixing inhomogeneous motions. In [35], [36], [45], [46] the
regularization across the interface in the normal direction can
be chosen nonzero, thus mixing motions of heterogeneous
structures, which our algorithm is designed to avoid as the
cardiac application requires within structure regularization. A
choice of zero regularization in the normal direction in [35],
[36], [45], [46] implies only smoothing along the tangential
direction, not ensuring that the normal motions are equal on
both sides of the boundary. Such equality is designed in our
algorithm. Both choices for the normal direction regularization
in [35], [36], [45], [46] do not simultaneously satisfy within
structure regularization and matching normal velocities on
each side of the boundary, which our application requires.
While [42], [43] achieves equal normal motions, it does so by
smoothing across structures. Our method also implements the
No-Slip condition, not present in other works.

C. Organization of Paper

In Section II, we specify the physical motion constraints
between structures, and formulate a registration model. In
Section III, we use the model to setup a variational problem
for estimating the motion given the two images assuming
infinitesimal motion, and then show how to estimate the mo-
tion. In Section IV, we show how to estimate noninfinitesimal
motion and simultaneously propagate the segmentation across
frames. In Section V, we show how to track multiple structures
together. Finally, in Section VI we show a series of experiments
to verify our method as well as compare it to recent methods.

II. MOTION AND REGISTRATION MODEL

In this section, we state the assumptions for motion estima-
tion. We assume the brightness constancy plus noise model

(1)

where ( ) is the image domain,
are two consecutive images from the sequence,
is the registration between frames and , and is a noise
process, which is assumed to be Gaussian. The structure of in-

terest in is denoted and the background is denoted
. Our model can be extended to any number of struc-

tures, but we forgo the details for simplicity of presentation. The
structure in frame is .
The registration is an invertible map, and thus we represent

it as an integration of a time varying velocity field (following
standard representation from fluid mechanics):

(2)
where , is a velocity field, and
for every . The map is such that indicates
the mapping of after it flows along the velocity field for time
, which is an artificial time parameter.
We assume that the motion/deformation of the structure of

interest and the surrounding region have different character-
istics and therefore the registration consists of two compo-
nents, and defined inside the structure of interest and
outside the structure , resp. This can be achieved with a ve-
locity field that has two components (both smooth within
their domains)

(3)
where . This implies that and are smooth and
invertible. When the structure contains a fluid (as the ventri-
cles) and is the surrounding medium (e.g., myocardium), as
in our case of interest, there are physical constraints from fluid
mechanics imposed on and at the boundary . One
constraint is that the normal component of and are equal
on

(4)

where indicates the surface normal of . The condition
implies that and do not separate when deformed by the
infinitesimal motion. Further, the No-Slip Condition from fluid
mechanics [32] implies that the motion of the fluid relative to the
surrounding medium is zero at the interface, thus, the tangent
component of and are zero, i.e.,

(5)

Modeling the velocity with two separate components allows
for different deformations for the structure of interest and sur-
rounding medium, and the constraint (4) couples the two com-
ponents in a physically plausible manner as does the No-Slip
condition. This implies continuity of the normal component of
across , but not necessarily differentiability.

III. ENERGY FOR INFINITESIMAL DEFORMATIONS

In this section, we consider the case when the registration is
where is an infinitesimal deformation, and

we show how one computes such that (4) and (5) are satisfied
while applying regularization only within regions.
In tracking, is given (e.g., at the initial frame or the estimate

from a previous frame), and the goal is to determine and
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Fig. 1. Regularization within regions alone does not induce matching normal
motions. [Top, left]: and in red. [Top, right]: . [Bottom, left]: Normal
components of the velocities just inside and outside using optical flow com-
puted separately within and . They are different, and thus not physically
viable. [Bottom, right]: Our approach (regularization only within regions, while
satisfying the normal matching constraint): normal motions along are equal.

, the object in the next frame. The
energy, which applies to both 2-D and 3-D data, is

(6)

(7)

The velocities are defined and (as
in (3)). The operator is the spatial gradient defined within
or (without crossing ). The first term in each of the above
integrals arises from a linearization of (1) (when ). The
second terms in each of the integrals are regularization. Reg-
ularization is done separately within each of the regions. The
weights indicate the amount of regularity desired
within each region. and are given variables, and in the final
deformation scheme to be described in Section IV, they will ini-
tially be and the initial region, resp.; they will then be updated
as part of an iterative scheme.
The problem above is a generalization of Horn–Schunck

optical flow [20]. Solving for the Horn–Schunck optical flow
within each region separately does not lead to velocities that
have equal normal components (see Fig. 1), whereas the so-
lution of (6) and (7) to be presented next does. Computing
Horn–Schunck optical flow in each region requires boundary

Fig. 2. Why regularization within regions? Heart is contracting. [Top, left]:
, in green, and the red box is zoomed in next images. [Top, right]: ve-

locity field with global regularization shows smoothing across the boundary.
[Bottom, left]: velocities with within region regularization and normal
constraint shows difference to global regularization. [Bottom, right]: normal
and tangent components of inside/outside velocities ; notice the matching
normal components, but discontinuity of tangent components (amplified by a
factor of 2 for visualization) across boundary (No-Slip not enforced). Boundary
velocity indicates contraction of myocardium, and tangent component inside
shows some circulation near boundary: cannot be captured with global regular-
ization.

conditions, and typically they are chosen to be Neumann
boundary conditions: and on .
Replacing those conditions with the constraints (7) does not
specify a unique solution. While Horn–Schunck optical flow
computed on the whole domain gives a globally smooth
motion, which by default satisfies matching normals at the
interface, this is not natural for the ventricles/myocardium,
where different motions exist in the regions (see Fig. 2), and
the motions should not be smoothed across regions.
In the next subsections, we show how the constraints (7) can

be enforced. The methods apply to both 2-D and 3-D data.

A. Energy Optimization With a Soft Constraint

The first approach to optimize (6) subject to (7) is to add a
term into (6) that penalizes deviations away from (7). This fa-
vors deformations that satisfy the constraint, but does not satisfy
the constraint exactly. The energy is

(8)

where . The space of is linear, the energy is
convex, and thus any local optimum is a global optimum. To
find the necessary conditions, we compute the first variation of
. Let and be perturbations of
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and , then the first variation (after simplification) is

(9)

where the boundary integrals arise from integration by parts,
and denotes the Laplacian operator. The necessary condi-
tions for a minimum are obtained by choosing such that

for all , and thus, we have

(10)

(11)

(12)

(13)

where indicates transpose, and (
is a matrix). The last two conditions are Robin boundary con-
ditions, which are conditions on a linear combination of the
normal derivatives of the functions and the function values on
the boundary. These boundary conditions specify a unique solu-
tion of the PDE. Note that and are linked to each other by
the boundary conditions (unlike separate solution of and
using Neumann boundary conditions in traditional optical flow).
Such a link between and is expected given that the normal
components on the boundary are to be close.

B. Energy Optimization With a Hard Constraint

We now optimize in (6) subject to (7) by enforcing (7) ex-
actly.Wefirstdo thederivationwithout theNo-Slipconditionand
then enforce the No-Slip condition at the end. The space of
satisfying the normal constraint is a linear space and the energy is
convex,soanylocaloptimummustbeaglobaloptimum.Wecom-
pute the first variation of evaluated at applied to a per-
turbation in the permissible space (those that perturb
so that theconstraint is satisfied).Thespaceofpermissiblepertur-
bations satisfy thenormalmatchingconstraint:
on (this is obtained by differentiating the constraint in the
directionof ).Thevariation is

(14)

One can decompose and on into its normal and tan-
gential components

where and for defined
on . Note that by permissibility, and thus,
we will set . One can similarly
decompose and on ; then

Substituting these formulas into the variation (14) yields

Since the and may be chosen indepen-
dently, the necessary conditions for an optimum are

(15)

(16)

(17)

(18)

(19)

(20)

The above PDE is uniquely specified, and thus the solution spec-
ifies a global optimum. The boundary conditions indicate that
the normal derivatives of only have normal components,
and the normal components of the normal derivative of and
differ by a scalar factor . Like the case of enforcing the

normal continuity constraint using the soft penalty, and are
related by the boundary conditions, which enforce the normal
continuity constraint exactly while regularizing only within re-
gions and separately.
Remark 1 (No-Slip Condition): The No-Slip condition can be

easily enforced as a hard constraint. The optimizing conditions
(15) and (16) remain the same, however, some of the boundary
conditions are modified as (since )

(21)

(22)

(23)

(24)
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C. Numerical Solution for Infinitesimal Deformation

The operators on the left-hand side of (15) and (16) (and sim-
ilarly (10) and (11) in the previous subsection) that act on and
are (with the given boundary conditions) positive semi-defi-

nite, and thus, one may use the conjugate gradient algorithm for
a fast numerical solution.
Since the boundary conditions are not standard in medical

imaging, we now show one possible scheme for the numerical
discretization of the PDE in the previous sections. We apply a
finite difference discretization. Consider a regular grid, we apply
finite differences for the Laplacian

(25)

(26)

where indicates that is a four-neighbor (in 2-D) or
six-neighbor (in 3-D) of . is not defined for (also,

is not defined for ). Therefore, we extrapolate these
quantities by discretizing the boundary conditions.
1) Soft Constraint: We consider discretization of (12) and

(13). Let and . Applying a one-sided first order
difference to approximate and , we find

where , the outward normal can be approximated simply by
the unit vector pointing from to , or more accurately as the
gradient of the level set function of . We employ the latter
approximation in determining .
Solving for and in terms of and , one

obtains

Let be the velocity on and be the operator
on the left-hand side of (10) and (11), then the discretization is

(27)

where and are gradient operators approximated with cen-
tral differences for interior points of and , respectively, and
one-sided differences are applied at the boundary points so that
differences do not cross the boundary.
2) Hard Constraint: By similar methodology, one can dis-

cretize the PDE (15)–(20). The discretization of the boundary
conditions is

for and . Since and are not defined, we
derive extrapolation formulas for these quantities by solving the
above system for and in terms of and .
This yields

(28)

(29)

The discretization of the operators on the left-hand side of (15)
and (16), which we denote , is then

.

(30)
Remark 2 (No-Slip Condition): It turns out that, up to first

order discretization of the boundary conditions, discretization
of the No-Slip condition (21)–(24) leads to the same discretiza-
tion as (17)–(20) (boundary conditions from the hard normal
matching constraint without the No-Slip condition). Therefore,
the No-Slip condition is automatically enforced (up to the first-
order discretization error) by the discretization scheme (30).
3) Solution Using Conjugate Gradient: The solution for

is obtained by solving

(31)

where is (27) or (30) using conjugate gradient.
We note that the numerical solution for our method has sim-

ilar computational cost as global regularization using the tradi-
tional Horn–Schunck method. The operators and slightly
differ from the operator in Horn–Schunck. The simple modifi-
cation and the computational speed make our method an easy
and costless alternative to Horn–Schunck.
Both the hard and soft constraint solution lead to boundary

conditions that are not traditional, and both are solved using a
similar numerical scheme. An advantage of the soft constraint
is that it is more general, i.e., choosing yields
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the hard formulation. By tuning of the parameter , it is pos-
sible to obtain better segmentation than the hard formulation.
The advantage of the hard formulation is that it requires fewer
parameters (no choice of or is needed).

IV. LARGER DEFORMATION AND SHAPE TRACKING

In this section, we consider noninfinitesimal deformations be-
tween frames, typical in realistic sequences. We derive a tech-
nique for the registration that satisfies (2) and (3). This is accom-
plished by using the results of the previous section to estimate
an initial infinitesimal deformation between the two given
images and , then and the region are deformed in-
finitesimally by , then the process is repeated on the deformed
region and image until convergence.
The scheme mentioned above can be formulated with PDEs.

This formulation estimates , , and defined in (2)
and (3). One solves for the incremental deformation by one
of the methods (hard or soft formulation) presented in the pre-
vious section, the image is warped by the accumulated warp

, and the procedure is repeated, but this time solving for the
velocity to deform . This procedure is

(32)

(33)

(34)

(35)

where is the signed distance function of ,
is the region formed by flowing along the velocity field for
time , and is defined in (6). The region is represented
by a level set function , which makes the compu-
tation of the region convenient and allows sub-pixel accu-
racy, although the level set is not required ( may be directly
computed from and ). The level set function satisfies a
transport equation shown in (34). The backward map sat-
isfies a transport PDE: the identity map is transported along in-
tegral curves of to determine . While in tracking, only

is desired, the backward map is computed to aid in accu-
rate numerical computation of (35), which is required to es-
timate (32). At the time of convergence of the region , ,
approximates , and the registration between to is

.
The approach described to obtain a noninfinitesimal deforma-

tion by accumulating infinitesimal deformations relates to [7],
which also accumulates infinitesimal deformations. Christensen
et al. [7] use the conservation of momentum to obtain the in-
finitesimal velocity, while our method uses a generalization of
Horn–Schunck optical flow to obtain the velocity. The main dif-
ference of our work from [7] is that our method uses within re-
gion regularization and the physical constraints at the interface
between a fluid and a medium.
Integrating a sufficiently smooth vector field to form as

in (33) [and (2)] guarantees that is a diffeomorphism within
and (see classical results [15]). Since in each region

Fig. 3. Global regularization versus physically motivated registration on a
synthetic sequence. [Top]: First two frames of the sequence, registration color
code (color indicates displacement direction, intensity indicates magnitude),
and ground truth registration between images (two regions of differing motion
and matching normals on the boundary). [Second row]: Registration computed
with global smoothness , and by the proposed method with
smoothness . [Third row]: warped images under the registration
computed. [Bottom]: Absolute difference between the image warped by the
registration and the next image (black—near zero values, white—high values).
The proposed method recovers the true registration while no amount of global
regularization recovers the true registration.

and are solutions of Poisson equations, is differen-
tiable with Sobolev regularity in each region, and so suffi-
ciently smooth. A surface (namely the zero level set) deformed
according to this velocity will remain smooth since the normal
component of the velocity is smooth along the boundary and
the normal component is the only component that affects the
geometry of the surface. Although, the tangent component is
discontinuous across the surface, the tangent component does
not affect the geometry of the surface. Further, since level sets
are used, any tangential components are automatically annihi-
lated in the surface evolution (34).
To track a structure in multiple frames, , ,

the initial given region is deformed using (32)–(35) to ob-
tain , the segmentation at frame . Proceeding itera-
tively, the estimate of the structure in frame , , is propagated
using (32)–(35) to determine in frame .

V. TRACKING MULTIPLE REGIONS

In cardiac image analysis, multiple structures (e.g., the right
and left ventricles, and myocardium) should be segmented. Our
method is easily adaptable to this case. Computation of in
Section III-C can be readily generalized. Multiple level sets
should be used to represent multiple regions. However, in our
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Fig. 4. Global regularization versus physically motivated tracking on synthetic
sequence. [First three rows]: Region tracking using global regularization

. [Last row]: proposed method. Since the proposed method is able to
better capture the underlying registration than global regularization, it also has
higher accuracy in segmentation of the circular object.

case of interest (ventricles and surrounding epicardium), the re-
gions form a topology that can be represented with a single level
set (ventricles—negative sign, myocardium—positive, every-
thing else—negative; see Fig. 10).
While theoretically for each will be an invertible/onto

map in each individual region, and thus regions cannot change
topology. However, numerically, between close by structures
(e.g., epicardium and RV), self-intersections may occur due to
finite step sizes and/or noise. Since we know that a topology
change is not physically possible, we enforce that the level set
evolution does not induce topology change. This is now stan-
dard using discrete topology preserving techniques [17]. The
original level set evolution is augmented with a step that looks
for nonsimple points that change sign in a level set update, i.e.,
locations of topology change. Such points are not allowed to
change sign, and this preserves topology. Nonsimple points are
easily detected with local pixel-wise operations, and this adds
almost no computational cost. The reader is referred to [17] for
details.
The heart has approximately periodic behavior, and enforcing

such a constraint may be helpful. While our method does not in-
corporate this constraint, using a sequential tracking framework
does not preclude incorporating a periodic constraint (see for ex-
ample, [11]).

VI. EXPERIMENTS

This section consists of five sets of experiments. The first
three experiments illustrate and verify that our technique works
as expected. The fourth and fifth experiments illustrate the main

TABLE I
QUANTITATIVE EVALUATION OF HARD VERSUS SOFT CONSTRAINT

FORMULATIONS ON THE MICCAI 2009 LV VALIDATION DATASET [41]. THE
TABLE SHOWS A SUMMARY OF ALL CASES. APD IS AVERAGE PERPENDICULAR
DISTANCE AND DM IS THE DICE METRIC. LOWER APD AND HIGHER DM

INDICATES BETTER FIT TO GROUND TRUTH

Fig. 5. Global regularization versus physically motivated tracking on synthetic
sequence: Quantitative evaluation. [Top]: Graph of Hausdorff distance (lower
indicates better fit to ground truth) between the ground truth segmentation
and the estimated contour using regularization and our
method, which yields the same curve for a wide range of parameters. [Bottom]:
Graph of registration accuracy as measured by root mean squared difference
between the deformed image and the next image. Lower rms indicates better fit
to ground truth.

motivation of our algorithm, which is to improve the prediction
step in interactive segmentation algorithms used in commercial
applications for cardiac analysis. These latter experiments thus
compares our technique to the recent interactive cardiac image
segmentation software Medviso [18], [49]. We also compare to
automatic segmentation methods.

A. Synthetic Experiment

We start by verifying our technique on a synthetic sequence
designed to mimic the piecewise deformation with matching
normals for which our technique is designed. We consider a
sequence composed of images with two textures (one for the
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Fig. 6. Illustrative differences of registration schemes on the LV. [Top]: registering only the inside of the ventricle leads to inaccurate segmentation in subsequent
frames. [Middle]: registering the whole image with global regularization (LDDMM) smooths motion across different structures and leads to inaccurate segmenta-
tion. [Bottom]: registering the entire image with proposed technique leads to the most accurate segmentation. Green: initialization, red: algorithm result, yellow:
ground truth.

object, and the other for the background). Textures are needed
so that registration can be determined. The region of interest is
the disc, and it along with the background contracts. In addi-
tion to the contraction, there is small rotational motions of the
disc and the background in opposite directions. The sequence is
constructed so that the normal component across the boundary
matches in both regions. This causes the true flow to be non-
smooth across the boundary. Ground truth registration between
consecutive images is known.
The first row of Fig. 3 shows the first two frames of

the synthetic sequence, the registration color code (color
indicates direction and intensity indicates magnitude) and
the ground truth registration for the first two frames. The
second row shows registrations computed by using (32)–(35)
with Horn–Schunck optical flow (global regularization) with
smoothness in (32), and the proposed method
(hard constraint) with . Global regularization
smooths across the boundary, mixing inhomogeneous motions,
leading to an inaccurate registration. Our proposed registration,
which does not smooth across the boundary while satisfying
physical constraints, is able to accurately recover the registra-
tion.
Fig. 4 displays the results of tracking the whole synthetic se-

quence of 10 frames (only four are shown) with global regular-
ization and our method. The first three rows display the result of
tracking using global regularization ( ). Notice
that global regularization of the deformation with small regular-
ization ( ) leads to less smoothing across the boundary, but
an inaccurate segmentation due to small regularization which
traps the contour in small scale structures. Larger regularization
smooths more across the boundary leading to an inaccurate reg-
istration. The segmentation improves, but the boundary is still

not captured accurately. No amount of global regularization is
able to detect an accurate boundary. Finally, our method (last
row), which smooths within regions while simultaneously sat-
isfying the normal matching constraint is able to capture both
an accurate registration and segmentation, and obtains similar
results for a wide range of regularity parameters. Fig. 5 quanti-
fies the tracking results. We include both the segmentation ac-
curacy (left) as measured by Hausdorff measure (HD) to ground
truth, and the accuracy of the warped image under the registra-
tion (right) to the next image using root mean square error. Both
verify the visual results.

B. Datasets for Ventricle Segmentation

The evaluations in the next sub-sections were carried out
on public data sets, the MICCAI Left Ventricle Dataset [41]
and the MICCAI Right Ventricle Dataset [28]. The validation
and training dataset from [41] consists of 15 sets of cardiac
cine-MRI images each. Each set contains images obtained
during 10–15 s breath-holds with a temporal resolution of
20 cardiac phases over the heart cycle. The ground truth is
provided for two out of 20 images for each slice and each set
has eight to 20 slices. Similarly, the training and test data set
from [28] contains 16 sets of cardiac cine-MRI images each,
and 16 test sets (Test1Set). Each set contains about 10 slices.
There are 20 images per cardiac cycle.

C. Comparison of Hard and Soft Constraints

This experiment on cardiac data shows the differences be-
tween the hard and soft formulations for enforcing matching
normal velocities at the interface and the No-Slip condition. As
stated in Section III-C, the soft formulation is more general than
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Fig. 7. Illustrative differences of registration schemes on the RV. [Top]: registering only the inside of the ventricle leads to inaccurate segmentation in subsequent
frames. [Middle]: registering the whole image with global regularization (LDDMM) smooths motion across different structures and leads to inaccurate segmenta-
tion. [Bottom]: registering the entire image with proposed technique leads to the most accurate segmentation. Green: initialization, red: algorithm result, yellow:
ground truth.

TABLE II
QUANTITATIVE COMPARISON TO MEDVISO AND LDDMM (GLOBAL
REGULARIZATION). RESULTS ARE ON THE MICCAI LV VALIDATION
[41] AND MICCAI RV TRAINING [28] DATASETS. LOW APD/HD

AND HIGH DM INDICATE GOOD MATCHES

the hard formulation (specific values of and in the soft for-
mulation lead to the hard formulation). Quantitative assessment
to ground truth is performed by using the APD (average per-
pendicular distance) and DM (dice metric). Table I shows the
results on theMICCAI LV validation set [41] using the hard for-
mulation (No-Slip condition automatically enforced), the soft
formulation without the No-Slip condition ( , ), and
the soft formulation with the No-Slip condition implemented
( , ). We have tuned based on the training set and
used this to evaluate on the test set. The soft formulation without
the No-Slip condition enforced performs the least accurate, fol-
lowed by the hard formulation, and finally the most accurate
is the soft formulation with the No-Slip condition implemented.
Although the soft formulation with the No-slip condition can be
tuned to obtain more superior results than the hard formulation
for a single image, as this experiment shows, that value of may
not lead to superior performance on the entire dataset. The ex-
periment also shows that the No-Slip condition, implicit in the
hard formulation, and explicit in the soft formulation leads to
better performance. In the next experiments, to avoid choosing
the parameters and , we use the hard formulation.

TABLE III
QUANTITATIVE COMPARISON TO METHODS FROM MICCAI CHALLENGES.
EVALUATION ON THE MICCAI LV VALIDATION+TRAINING [41] AND MICCAI
RV TEST1SET [28] DATASETS. LOW APD/HD AND HIGH DM INDICATE

GOOD MATCHES. OUR METHOD DOES NOT MAKE USE OF TRAINING DATA IN
CONTRAST TO OTHER METHODS, BUT IT DOES REQUIRE INITIALIZATION IN

THE FIRST FRAME, WHICH OTHER METHODS DO NOT REQUIRE

D. LV and RV: Comparison of Three Registration Schemes

In this experiment, we compare registration methods used
for segmentation of the LV and RV. We visually compare the
tracking results given by our method to (M1) registration of only
the interior of current estimate of the ventricle to a subset of
next image (to show whole image registration is needed), and
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Fig. 8. Comparison on tracking the left ventricle. Two sample results on the MICCAI LV Dataset [41] of full cardiac cycles (only five out of 20 images are
shown) of the proposed algorithm and Medviso. Ground truth when available is superimposed in yellow, and the red contour is the result obtained by the indicated
algorithm. Visual results indicate that our algorithm is better able to handle inhomogeneous appearance, and is thus more accurate.

to (M2) full image registration with global regularization (we
use LDDMM [2] to ensure an advanced global regularization
method). M1 is achieved by computing just the inside velocity
with Neumann boundary conditions on . The best results
with respect to ground truth are chosen by choosing the optimal
smoothness parameter in all methods. Results on tracking a full
cardiac cycle are given in Fig. 6 for the LV and Fig. 7 for the RV.
Registering only the organ (M1) results in errors (as the back-
ground registration is helpful in restricting undesirable registra-
tions of the foreground). LDDMM registration (M2) smooths
motion from irrelevant background structures into the ventri-
cles, which results in drifting from the desired boundary. Our
method, which smooths within regions while satisfying phys-
ical constraints, achieves the most accurate results.

E. LV and RV Segmentation: Quantitative Comparison

We show experiments verifying that our algorithm improves
the prediction step of interactive segmentation methods. We
show that less interaction is needed with our approach than with
a recent commercial cardiac segmentation software, Segment
from Medviso [18], [49]. We also compare it to LDDMM to

show that the physically motivated constraints lead to superior
results quantitatively. Both methods start with the same initial
hand segmentation, and subsequent frames are segmented via
propagation. No manual interaction is used as we wish to show
that our method would require less interaction. The regularity
parameters in our method are found by choosing
them so that the results are closest to ground truth in a few
training cases. The same parameter is then used for all other
cases. LDDMM uses regularity parameter ( ), which is
similarly tuned.
Figs. 8 and 9 shows some sample tracking results of the pro-

posed method and Medviso on full cardiac cycles of two dif-
ferent cases on both the LV dataset and the RV dataset. The
ground truth (yellow) is superimposed when available. A sum-
mary of the results on the entire datasets is shown in Table II, and
results of LDDMM (global regularization) are also provided.
The accuracy with respect to ground truth is measured using av-
erage perpendicular distance (APD) and dice metric (DM) for
left ventricle, and Hausdorff distance (HD) and DM for the right
ventricle. These metrics are chosen since they are the standard
ones used on these datasets. Both qualitative and quantitative
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TABLE IV
QUANTITATIVE ANALYSIS OF PERIODIC CONSISTENCY. QUANTIFICATION OF DIFFERENCE BETWEEN THE INITIAL SEGMENTATION AND THE SEGMENTATION FROM
THE ALGORITHM INDICATED AFTER ONE CARDIAC CYCLE. EVALUATION ON THE MICCAI LV TRAINING DATASET. LOWER APD AND HIGHER DM INDICATES

CLOSER MATCH OF INITIAL AND FINAL SEGMENTATIONS

Fig. 9. Comparison on tracking the right ventricle. Two sample results on the MICCAI RV Dataset [28] of full cardiac cycles (only five out of 20 images are
shown) of the proposed algorithm and Medviso. Ground truth when available is superimposed in yellow (not available on last frame), and the red contour is the
result obtained by the indicated algorithm. Our method is less susceptible to clutter nearby the RV, and thus is able to capture the RV more accurately.

results show that our proposed method leads to more accurate
segmentation of the ventricles than Medviso and LDDMM, and
thus less interaction than segmentation propagation in Medviso.
We also compare the results with other methods in the

MICCAI 2009 LV and MICCAI 2012 RV challenges. Table III
shows the results. Other methods use training data or an atlas,
while our method requires no training data. Our method does
require an initial segmentation from the first frame, which
other methods reported on the challenges do not require. For
MICCAI 2009 LV dataset, we used training and validation
dataset (30 sets). For MICCAI 2012 RV we used Test1Set (16
sets) for evaluation. The algorithm results were sent to the

RVSC organizers for blind statistical evaluation since ground
truth was not provided. Results are compared with MICCAI
2012 RVSC participating teams as reported on RVSC website.
We compare only the end systole (ES) results as we used the
end diastole (ED) for initialization. Results on the MICCAI LV
indicate that our method performs well (third best), and our
method performs the best on the MICCAI RV dataset.

F. Multiple Region Segmentation: Full Heart Segmentation

We now demonstrate our approach in performing challenging
full heart segmentation: segmentation of the ventricles and epi-
cardium all at once. Both the RV and epicardium are especially
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Fig. 10. Comparison on multiple region segmentation. [Top to Bottom]: first, third, and sixth slices shown. The LV (red), RV (cyan), and myocardium outer
boundary (yellow) are simultaneously segmented using our proposed technique. Comparison is shown to Medviso. Visual results indicate that our technique is
more accurate in segmenting all structures.

challenging as the contrast of the RV and background is subtle in
comparison to the LV, and the myocardiumwall near parts of the
RV is very thin. We are not aware of another interactive method
that is able to segment all structures, and so we compare toMed-
viso even though the method is not specifically tailored to the
myocardium, but the method is generic and is able to propagate
a segmentation. Medviso does not segment multiple regions all
at once and thus we perform separate segmentation of the LV,
RV, and epicardium.
Fig. 10 shows the slice-wise results of our method and Med-

viso on a full 3-D cardiac MRI sequence for a full cardiac cycle.
Results indicate that our method is more accurate in capturing
the shape of the ventricles and epicardium. Medviso gives seg-
mentations that stray far from the epicardium, and sometimes

physically impossible configurations (intersections of the RV
and epicardium). Fig. 11 shows visualization of the results in
3-D, and that our method more accurately resembles the struc-
ture of the heart.
Ground truth is not available for the outer wall of the my-

ocardium in any standard dataset to the best of our knowledge.
Thus, to perform quantitative analysis, we evaluate periodic
consistency. After a complete cardiac cycle, the position of the
epicardium is approximately the same. Thus, we quantify the
differences of the initial segmentation of the epicardium from
the segmentation after one cardiac cycle. We also include LV
and RV to quantify the periodic consistency. Table IV gives
a summary of the results on 3-D data from the MICCAI RV
Dataset. Our method is more accurate than Medviso.
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Fig. 11. Comparison on Multiple Region Segmentation (3-D Visualization). [Top row]: Medviso result, [Bottom row]: our result. Grey: Myocardium, cyan: right
ventricle, red: left ventricle. Only 5 of 20 frames shown. Results indicate that the output of our method better resembles heart structure.

VII. CONCLUSION

We have presented an algorithm for propagating the segmen-
tation from one frame in an image sequence to another via a
novel motion estimation algorithm. The registration is physi-
cally motivated by the heterogeneous motions among substruc-
tures and the physical constraints between motions in adjacent
regions, specifically thematching condition of normal velocities
and the No-Slip condition at the interface. Traditional registra-
tion algorithms apply regularization that smooths across bound-
aries, mixing motions of differing substructures, do not incor-
porate the aforementioned physical constraints, and therefore
yield inaccurate registrations and hence segmentation propaga-
tions. Our motion estimation technique is computationally effi-
cient and has nearly the same cost as traditional Horn–Schunck
optical flow.
Experiments have shown that our method is more effective

than global regularization in propagating segmentations in car-
diacMRI data of the heart. Moreover, we improved the propaga-
tion step in interactive segmentation techniques, which are used
commercially for cardiac MRI segmentation. We have com-
pared our technique both qualitatively and quantitatively against
a recent commercial software, Medviso, and results indicate that
our method would require less manual interaction, specifically
in LV, RV, and epicardium segmentation.
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